Modelling of anisotropic behavior in fiber and particle reinforced composites

  • Holm Altenbach
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 474)


Fiber and particle reinforced composites are widely used in aircraft, spacecraft and automotive industries, but also in various branches of the traditional mechanical engineering. They substitute classical materials like steel, aluminium, etc. since their specific stiffness is significant higher. The optimal design of structures made of reinforced composites demands the mathematical description of the constitutive behavior of these materials characterized by anisotropic mechanical properties and inhomogeneities. This contribution is devoted to the phenomenological modelling of fiber and particle reinforced materials.

After a short introduction the modelling principles are briefly discussed. For a realistic material description the anisotropic elasticity is necessary. The generalized Hooke’s law is introduced and the symmetry relations of the stiffness and compliance tensors are discussed. For the analysis of the limit state of composite materials various failure and strength criteria are presented. Finally, a short introduction into modelling of polymer suspensions is given.


Composite Material Strain Tensor Injection Molding Material Behavior Transformation Rule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Advani, S.G., and Tucker, C.L. (1987). The use of tensor to describe and predict fiber orientation in short-fiber composites. J. Rheol. 31:751–784.CrossRefGoogle Scholar
  2. Agarwal, B.D., and L.J. Broutman (1990). Analysis and Performance of Fibre Composites. New York: John Wiley & Sons.Google Scholar
  3. Altenbach, H., Altenbach, J., and Kissing, W. (2004). Mechanics of Composite Structural Elements. Berlin: Springer.Google Scholar
  4. Altenbach, H., Altenbach, J. und Rikards, R. (1996). Einführung in die Mechanik der Laminat-und Sandwichtragwerke. Stuttgart: Dt. Verlag für Grundstoffindustrie.Google Scholar
  5. Altenbach, H., Altenbach, J. und Zolochevsky, A. (1995). Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Stuttgart: Deutscher Verlag für Grundstoffindustrie.Google Scholar
  6. Altenbach, H., and Becker, W., eds., (2003). Modern Trends in Composite Laminates Mechanics, CISM Courses and Lectures No. 448. Wien: Springer.Google Scholar
  7. Altenbach, H., and Tushtev, K. (2001). A new static failure criterion for isotropic polymers. Mechanics of Composite Materials 37(5/6):475–482.CrossRefGoogle Scholar
  8. Altenbach, H., Lauschke, U. und Zolochevsky, A.A. (1993). Ein verallgemeinertes Versagenskriterium und seine Gegenüberstellung mit Versuchsergebnissen. ZAMM 73:T372–T375.MATHGoogle Scholar
  9. Altenbach, H., Naumenko, K., L’vov, G.I., and Pilipenko, S.N. (2003a). Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech. Comp. Mat. 39:221–234.CrossRefGoogle Scholar
  10. Altenbach, H., Naumenko, K., and Zhilin, P. (2003b). A micro-polar theory for binary media with applications to phase-transional flow of fibre suspensions. Contin. Mech, Thermodyn. 15:539–570.MATHCrossRefMathSciNetGoogle Scholar
  11. Altenbach, H., and Skrzypek, J.J., eds., (1999). Creep and Damage in Materials and Structures, CISM Courses and Lectures No. 399. Wien: Springer.Google Scholar
  12. Altenbach, H., and Zolochevsky, A. (1996). A generalized failure criterion for three-dimensional behaviour of isotropic materials. Engng Frac. Mech. 54(l):75–90.CrossRefGoogle Scholar
  13. Altenbach, J. und Altenbach, H. (1994). Einführung in die Kontinuumsmechanik. Stuttgart: Teubner.Google Scholar
  14. Ambarcumyan, S.A. (1991). Theory of Anisotropic Plates. Washington: Hemispher Publishing.Google Scholar
  15. Ashbee, K. (1994). Fundamental Principles of Reinforced Composites. Lancaster: Technomic.Google Scholar
  16. Ashby, M.F. (1987). Technology of the 1990’s: advanced materials and predictive design. Phil. Trans. R. Soc. London A322:393–407.Google Scholar
  17. Batchelor, G.K. (1970). The stress system in a suspension of force-free particles. J. Fluid Mech. 41:545–570.MATHCrossRefMathSciNetGoogle Scholar
  18. Bay, R.S., and Tucker, C.L. (1992). Fiber orientation in simple injection moldings, Pt.2 Experimental results. Polym. Compos. 13:332–341.CrossRefGoogle Scholar
  19. Berthelot, J.-M. (1999). Composite Materials. Mechanical Behaviour and Structure Analysis. New York: Springer.Google Scholar
  20. Boehler, J.P. (1987). Anisotropic linear elasticity. In Boehler, J.P., ed. Application of Tensor Functions in Solid Mechanics, CISM Courses and Lectures No. 292. Wien: Springer, pp. 55–65.Google Scholar
  21. Chawla, K.K. (1987). Composite Materials. New York: Springer.Google Scholar
  22. Christensen, R.M. (1997). Stress based yield failure criteria for fiber composites. Int. J. Solids Structures 34:529–543.MATHCrossRefGoogle Scholar
  23. Decolon, C. (2002). Analysis of Composite Structures. London: Hermes Penton Science.Google Scholar
  24. Dinh, S.M., and Armstrong, R.C. (1984). A rheological equation of state for semiconcentrated fibre suspensions. J. Rheol. 28:207–227.MATHCrossRefGoogle Scholar
  25. Doi, M., and Edwards, S.F. (1988). The Theory of Polymer Dynamics. Oxford: University Press.Google Scholar
  26. Dupret, F., Couniot, A., and Mal, L. (1999). Modelling and simulation of injection molding. In Siginer, D.A., Kee, D.D., and Chhabra, R.P., eds., In Advances in the Flow and Rheology of Non-Newtonian Liquids. Amsterdam: Elsevier. 939–1010.Google Scholar
  27. Dupret, F., and Verleye, V. (1999). Modelling of the flow of fiber suspensions in narrow gaps. In Siginer, D.A., Kee, D.D., and Chhabra, R.P., eds., In Advances in the Flow and Rheology of Non-Newtonian Liquids. Amsterdam: Elsevier. 1347–1398.Google Scholar
  28. Ehrenstein, G. (1992). Faserverbund-Kunststoffe. München: Hanser.Google Scholar
  29. Eringen, A.C. (2001). Microcontinuum Field Theories. II. Fluent Media. New York: Springer.MATHGoogle Scholar
  30. Gay, D. (2002). Composite Materials: Design and Applications. Boca Raton: CRC Press.Google Scholar
  31. Glaser, S. und von Diest, K. (1988). Berechnungsverfahren für GFK-Bauteile. Kunststoffe 88:537–542.Google Scholar
  32. Gibson, R.F. (1994). Principles of Composite Material Mechanics. New York: McGraw-Hill.Google Scholar
  33. Gol’denblat, I.I., and Kopnov, V.A. (1968). Criteria of Strength and Plasticity of Structural Materials (in Russ.). Moscow: Mashinostroenie.Google Scholar
  34. Haddad, Y.M. (2000a). Mechanical Behaviour of Engineering Materials, Vol. 1 Static and Quasi-Static Loading. Doordrecht: Kluwer.Google Scholar
  35. Haddad, Y.M. (2000b). Mechanical Behaviour of Engineering Materials, Vol. 2 Dynamic Loading and Intelligent Material Systems. Doordrecht: Kluwer.Google Scholar
  36. Hahn, H.G. (1985). Elastizitätstheorie. Stuttgart: Teubner.MATHGoogle Scholar
  37. Hashin, Z. (1980). Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47:329–334.CrossRefGoogle Scholar
  38. Haupt, P. (2002). Continuum Mechanics and Theory of Materials. Berlin: Springer.MATHGoogle Scholar
  39. Hegler, R.P. (1984). Faserorientierung beim Verarbeiten von kurzfaserverstärkter Thermoplaste. Kunststoffe 74:271–277.Google Scholar
  40. Hergert, W., Däne, M., and Ernst, A., eds., (2004). Computational Materials Science, Lect. Notes Phys. No. 642. Berlin: Springer.Google Scholar
  41. Hetnarski, R.B., and Ignaczak, J. (2004). Mathematical Theory of Elasticity. New York: Taylor & Francis.MATHGoogle Scholar
  42. Hill, R. (1950). The Mathematical Theory of Plasticity. London: Oxford University Press.MATHGoogle Scholar
  43. Huilgol, R.R., and Phan-Thien, N. (1997). Fluid Mechanics of Viscoelasticity. Amsterdam: Elsevier.Google Scholar
  44. Hult, J., and Rammerstorfer, F.G., eds., (1994). Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures, CISM Courses and Lectures No. 348. Wien: Springer.Google Scholar
  45. Jeffery, G.B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. London A102:161–179.Google Scholar
  46. Jones, R.M. (1975). Mechanics of composite materials. Washington: McGraw-Hill.Google Scholar
  47. Kachanov, L.M. (1974). Foundation of Fracture Mechanics (in Russ.). Moscow: Nauka.Google Scholar
  48. Kim, D.-H. (1995). Composite Structures for Civil and Architectural Engineering. London: E & FN Spoon.Google Scholar
  49. Krawietz, A. (1986). Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Berlin: Springer.MATHGoogle Scholar
  50. Lagzdins, A., Tamuzs, V., Teters, G., and Kregers, A. (1992). Orientational Averaging in Mechanics of Solids. London: Longman.MATHGoogle Scholar
  51. Lai, W.M., Rubin, D., and Krempl, E. (1993). Introduction to Continuum Mechanics. Oxford: Pergamon.Google Scholar
  52. Lekhnitskij, S.G. (1981). Theory of Elasticity of an Anisotropic Body. Moscow: Mir.MATHGoogle Scholar
  53. Lemaitre, J., ed., (2001). Handbook of Materials Behavior Models, Vol. 1–3. San Diego: Academic Press.Google Scholar
  54. Lemaitre, J., et Chaboche, J.L. (1985). Mécanique des Matériaux Solides. Paris: Dunod.Google Scholar
  55. Love, A.E.H. (1927). A Treatise on the Mathematical Theory of Elasticity. Cambridge: University Press.MATHGoogle Scholar
  56. Lurie, A. (1990). Nonlinear theory of elasticity. Amsterdam: North-Holland.MATHGoogle Scholar
  57. Malmeister, A.K. (1966). Geometry of strength theory (in Russ.). Mekhanika Polymerov (4):519–534.Google Scholar
  58. Mālmeisters, A., Tamužs, V. und Teters, G. (1977). Mechanik der Polymerwerkstoffe. Berlin: Akademie-Verlag.Google Scholar
  59. Menning, G. (1995). Werkzeuge für die Kunststoffverarbeitung. München: Hanser.Google Scholar
  60. Michaeli, W. (1995). Plastics Processing. München: Hanser.Google Scholar
  61. Norris, S.C. (1950). Strength of orthotropic materials subjected to continued stresses, In Forest Products Lab. Rep., No. 1816.Google Scholar
  62. Novozhilov, V.V. (1951). On the relations between the stresses and the strains in non-linear elastic materials (in Russ.), Prikl. Mat. i Mekh., XV(2): 183–194.Google Scholar
  63. Nowacki, W. (1985). Theory of Asymmetric Elasticity. Oxford: Pergamon.Google Scholar
  64. Nye, J.F. (1992). Physical properties of crystals. Oxford: Oxford Science Publications.Google Scholar
  65. Palmov, V.A. (1998). Vibrations in Elasto-Plastic Bodies. Berlin: Springer.Google Scholar
  66. Paul, B. (1968). Macroscopic criteria for plastic flow and brittle fracture. In Liebiwitz, H., ed. Fracture, An Advanced Treatise, Vol. 2. New York: Academic. 313–496Google Scholar
  67. Petrie, C.J.S. (1999). The rheology of fibre suspensions. J. Non-Newton. Fluid Mech. 87:369–402.MATHCrossRefGoogle Scholar
  68. Powell, P.C. (1994). Engineering with Fibre-Polymer Laminates. London: Chapman & Hall.Google Scholar
  69. Puck, A. (1996). Festigkeitsanalyse von Faser-Matrix-Laminaten. München: Hanser.Google Scholar
  70. Pylypenko, S.N. (2003). Investigation of elastic properties of short fiber composite materials (in Ukrain.). Master Thesis, Kharkov National Technical University.Google Scholar
  71. Rabinovich, A.L. (1970). Introduction to Mechanics of Reinforced Polymers (in Russ.). Moscow: Nauka.Google Scholar
  72. Saito, M., Kukula, S., Kataoka, Y., and Miyata, T. (2000). Practical use of statiscally modified laminate model for injection moldings. Mat. Sci. Eng. A285:280–287.Google Scholar
  73. Skrzypek, J.J., and Ganczarski, A.W., eds., (2003). Anisotropic Behaviour of Damaged Materials, Lect. Notes in Appl. Comp. Mech., Vol. 9. Berlin: Springer.Google Scholar
  74. Tamuzh, V.P., and Protasov, V.D., eds. (1986). Failure of Structures made of Composite Materials (in Russ.). Riga: Zinatne.Google Scholar
  75. Timoshenko, S.R (1953). History of Strength of Materials. New York: McGraw-Hill.Google Scholar
  76. Todhunter, I., and Pearson, K. (1886). A History of Elasticity and of the Strength of Materials, Vol. I. Cambridge: University Press.MATHGoogle Scholar
  77. Todhunter, I., and Pearson, K. (1893). A History of Elasticity and of the Strength of Materials, Vol. II. Cambridge: University Press.Google Scholar
  78. Truesdell, C., and Noll, C.W. (1992). The Non-linear Field Theories of Mechanics. Berlin: Springer.MATHGoogle Scholar
  79. Tsai, S.W., and Hahn, H.T. (1980). Introduction to Composite Materials. Lancaster: Technomic.Google Scholar
  80. Tsai, S.W., and Wu, E.M. (1971). A general theory of strength for anisotropic materials. J. Comp. Mat. 5:58–80.Google Scholar
  81. Tucker, C.L., and Advani, S.G. (1994). Processing of short-fiber systems, In S.G. Advani, ed., Flow and Rheology in Polymer Composites Manufacturing. Amsterdam: Elsevier. 147–202.Google Scholar
  82. Vincent, M., and Agassant, J.F. (1986). Experimental study and calculations of short glass fiber orientation in a center gated molded disc. Polym. Compos. 7:76–83.CrossRefGoogle Scholar
  83. Vinson, J.R., and Sierakowski, R.L. (1987). The Behavior of Structures Composed of Composite Materials. Dordrecht: Martinus Nijhoff.MATHGoogle Scholar
  84. Whiteside, P.D., Coates, P.J., Hine, P.J., and Ducket, R.A. (2000). Glass fibre orientation within injection moulded automotive pedal. Plast. Rubber Compos. 29:38–5.Google Scholar
  85. Yu, M.-H. (2004). Unified Strength Theory and its Application. Berlin: Springer.Google Scholar
  86. Zakharov, K.V. (1961). Strength criterion for laminated plastics (in Russ.). Plastmassy (8):59–62.Google Scholar
  87. Zakharov, K.V. (1963). On the strength of laminated plastics (in Russ.). Plastmassy (6):57–60.Google Scholar
  88. Życzkowski, M. (1981). Combined Loadings in the Theory of Plasticity. Warszawa: PWN-Polish Scientific Publisher.MATHGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Holm Altenbach
    • 1
  1. 1.Lehrstuhl Technische Mechanik, Fachbereich IngenieurwissenschaftenMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations