Environmental Stratified Flows pp 133-178 | Cite as

# Prototypical examples of stratified shear flow

Chapter

## Abstract

Stratification effects on turbulence are examined in some fundamental shear flows. The differences between unbounded flows and those with walls are indicated. The role of the gradient Richardson number is assessed. Detailed results on turbulence energetics, transport and mixing are presented.

## Keywords

Shear Layer Turbulent Kinetic Energy Direct Numerical Simulation Richardson Number Horizontal Shear
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## Bibliography

- V. Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation.
*J. Fluid Mech.*, 459:1–42, 2002.MATHCrossRefADSGoogle Scholar - V. Armenio and S. Sarkar. Mixing in a stably-stratified medium by horizontal shear near vertical walls.
*Theor. Comput. Fluid Dynamics*, 17:331–349, 2004.MATHCrossRefADSGoogle Scholar - S. P. S. Arya. Buoyancy effects in a horizontal flat-plate boundary layer.
*J. Fluid Mech.*, 68:321, 1975.CrossRefADSGoogle Scholar - S. Basak and S. Sarkar. Dynamics of a Stratified Shear Layer with Horizontal Shear.
*submitted*, 2005.Google Scholar - J. H. Bell and R. D. Mehta. Development of a two-stream mixing layer from tripped and untripped boundary layers.
*AIAA J.*, 28:2034–2042, 1990.ADSCrossRefGoogle Scholar - R. E. Britter.
*An experiment on turbulence in a density stratified fluid*. PhD thesis, Monash Univerity, Australia, 1974.Google Scholar - S. Scott Collis, Sanjiva K. Lele, Robert D. Moser, and Michael M. Rogers. The evolution of a plane mixing layer with spanwise nonuniform forcing.
*Phys. Fluids*, 6(1):381–396, 1994.MATHCrossRefADSGoogle Scholar - Pierre Comte, Marcel Lesieur, and Eric Lamballais. Large-scale and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer.
*Phys. Fluids*, 4(12): 2761–2778, 1992.CrossRefADSGoogle Scholar - P. F. Crapper and P. F. Linden. The structure of turbulent density interfaces.
*J. Fluid Mech.*, 65:45, 1974.CrossRefADSGoogle Scholar - P. E. Dimotakis and G. L. Brown. Mixing layer at high reynolds-number-large-structure dynamics and entrainment.
*J. Fluid Mech.*, 78:535, 1976.CrossRefADSGoogle Scholar - D.M. Farmer, E.A. D’Asaro, M.V. Trevorrow, and G.T. Dairiki. Three-dimensional structure in a tidal convergence front.
*Continental Shelf Research*, 15:1649–1673, 1995.CrossRefADSGoogle Scholar - H. J. S. Fernando. Turbulent mixing in stratified fluids.
*Ann. Rev. Fluid Mech.*, 23:455–493, 1991.CrossRefADSGoogle Scholar - P. Flament, R. Lumpkin, J. Tournadre, and L. Armi. Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day.
*J. Fluid Mech.*, 440:401–409, 2001.MATHCrossRefADSGoogle Scholar - K. S. Gage and W. H. Reid. The stability of thermally stratified plane Poiseuille flow.
*J. Fluid Mech.*, 33:21, 1968.MATHCrossRefADSGoogle Scholar - R. P. Garg, J. H. Ferziger, S. G. Monismith, and J. R. Koseff. Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism.
*Phys. Fluids*, 12:2569, 2000.CrossRefADSGoogle Scholar - T. Gerz, U. Schumann, and S. E. Elghobashi. Direct numerical simulation of stratified homogeneous turbulent shear flows.
*J. Fluid Mech.*, 200:563–594, 1989.MATHCrossRefADSGoogle Scholar - T. Gerz H.-J. Kaltenbach and U. Schumann. Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow.
*J. Fluid Mech.*, 280:1–40, 1994.MATHCrossRefADSGoogle Scholar - M. A. Hernan and J. Jimenez. Computer-analysis of a high-speed film of the plane turbulent mixing layer.
*J. Fluid Mech.*, 119:323, 1982.CrossRefADSGoogle Scholar - S. E. Holt, J. R. Koseff, and J. H. Ferziger. A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence.
*J. Fluid Mech.*, 237: 499–539, 1992.MATHCrossRefADSGoogle Scholar - E. J. Hopfinger. Turbulence in stratified fluids: A review.
*J. Geophys. Res.*, 92:5287–5303, 1987.ADSCrossRefGoogle Scholar - L. N. Howard. Note on a paper of John. W. Miles.
*J. Fluid Mech.*, 10:509–512, 1961.MATHCrossRefADSMathSciNetGoogle Scholar - G. N. Ivey and J. Imberger. On the nature of turbulence in a stratified fluid. Part I: the energetics of mixing.
*J. Phys. Oceanogr.*, 21:650–658, 1991.CrossRefADSGoogle Scholar - F. G. Jacobitz and S. Sarkar. The effect of nonvertical shear on turbulence in a stably stratified medium.
*Phys. Fluids*, 10(5):1158–1168, 1998.CrossRefADSMathSciNetMATHGoogle Scholar - F. G. Jacobitz and S. Sarkar. On the Shear Number Effect in Stratified Shear Flow.
*Theor. Comput. Fluid Dynamics*, 13:171–188, 1999a.MATHCrossRefADSGoogle Scholar - F. G. Jacobitz and S. Sarkar. A direct numerical study of transport and anisotropy in a stably stratified turbulent flow with uniform horizontal shear.
*Flow, Turbulence and Combustion*., 63:343–360, 1999b.CrossRefGoogle Scholar - F. G. Jacobitz, S. Sarkar, and C. W. VanAtta. Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow.
*J. Fluid Mech.*, 342:231–261, 1997.MATHCrossRefADSGoogle Scholar - J.A. Johannessen, R.A. Schuman, G. Digranes, D.R. Lyzenga, C. Wackerman, O.M. Johannessen, and P. W. Vachon. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar.
*J. Geophys. Res.*, 101:6651–6667, 1996.CrossRefADSGoogle Scholar - S. Komori.
*Turbulence structure in stratified flow*. PhD thesis, Kyoto Univerity, Japan, 1980.Google Scholar - S. Komori, H. Ueda, F. Ogino, and T. Mizushina. Turbulence structures in stably stratified open-channel flow.
*J. Fluid Mech.*, 130:13–26, 1983.CrossRefADSGoogle Scholar - B. Kosovic and J. A. Curry. A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer.
*J. Atmos. Sci.*, 57:1052, 2000.CrossRefADSMathSciNetGoogle Scholar - R. Lien and T.B. Sanford. Turbulence spectra and local similarity scaling in a strongly stratified oceanic bottom boundary layer.
*Continental Shelf Research*, 24:375–392, 2004.CrossRefADSGoogle Scholar - J. T. Lin and Y. H. Pao. Wakes in stratified fluids.
*Ann. Rev. Fluid Mech.*, 11:317–338, 1979.CrossRefADSGoogle Scholar - Y. Lu, R. G. Lueck, and D. Huang. The effect of stable thermal stratification on the stability of viscous parallel flows.
*J. Phys. Oceanogr.*, 30:855–867, 2000.CrossRefADSGoogle Scholar - L. Mahrt. Stratified atmospheric boundary layers.
*Boundary-Layer Meteorology*, 90: 375–396, 1999.CrossRefADSGoogle Scholar - P. J. Mason and S. H. Derbyshire. Large eddy simulation of the stably-stratified atmospheric boundary layer.
*Boundary-Layer Met.*, 53:117, 1990.CrossRefADSGoogle Scholar - J. W. Miles. On the stability of heterogeneous shear flows.
*J. Fluid Mech.*, 10:496–508, 1961.MATHCrossRefADSMathSciNetGoogle Scholar - M. J. Moore and R. R. Long. An experimental investigation of turbulent stratified shearing flow.
*J. Fluid Mech.*, 49:635–655, 1971.CrossRefADSGoogle Scholar - P. Müller, G. Holloway, F. Henyey, and N. Pomphrey. Nonlinear interactions among gravity waves.
*Rev. Geophys.*, 24:493–536, 1986.ADSCrossRefGoogle Scholar - W. Munk, L. Armi, K. Fischer, and F. Zachariasen. Spirals on the sea.
*Proc. R. Soc. Lond. A*, 456:1217–1280, 2000.MATHADSMathSciNetCrossRefGoogle Scholar - R. Nagaosa and T. Saito. Turbulence structure and scalar transfer in stably stratified free-surface flows.
*AIChE J.*, 43:2393, 1997.CrossRefGoogle Scholar - K. J. Nygaard and A. Glezer. The effect of phase variations and cross-shear on vortical structures in a plane mixing layer.
*J. Fluid Mech.*, 276:21–59, 1994.CrossRefADSGoogle Scholar - Y. Pan and S. Banerjee. A numerical study of free-surface turbulence in channel flow.
*Phys. Fluids*, 7:1649–1664, 1995.MATHCrossRefADSGoogle Scholar - W. R. Peltier and C. P. Caulfield. Mixing efficiency in stratified shear flows.
*Ann. Rev. Fluid Mech.*, 35:135–167, 2003.CrossRefADSMathSciNetGoogle Scholar - J. F. Piat and E. J. Hopfinger. A boundary layer topped by a density interface.
*J. Fluid Mech.*, 113:411, 1981.CrossRefADSGoogle Scholar - P. S. Piccirillo and C. W. VanAtta. The evolution of a uniformly sheared thermally stratified turbulent flow.
*J. Fluid Mech.*, 334:61–86, 1997.CrossRefADSGoogle Scholar - J. J. Riley and M. P. Lelong. Fluid motions in the presence of strong stable stratification.
*Ann. Rev. Fluid Mech.*, 32:613–657, 2000.CrossRefADSMathSciNetGoogle Scholar - R. S. Rogallo. Numerical experiments in homogeneous turbulence.
*NASA TM 81315*, 1981.Google Scholar - M. M. Rogers, P. Moin, and W. C. Reynolds.
*The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow*. PhD thesis, Stanford University, Report TF-25, Mechanical Engr., 1989.Google Scholar - M. M. Rogers and R. D. Moser. Direct simulation of a self-similar turbulent mixing layer.
*Phys. Fluids*, 6(2):903–923, 1994.MATHCrossRefADSGoogle Scholar - J. J. Rohr, E. C. Itsweire, K. N. Helland, and C. W. VanAtta. Growth and decay of turbulence in a stably stratified shear flow.
*J. Fluid Mech.*, 195:77–111, 1988.MATHCrossRefADSMathSciNetGoogle Scholar - E. S. Saiki, C. H. Moeng, and P. P. Sullivan. Large-eddy simulation of the stably-stratified planetary boundary layer.
*Boundary-Layer Met.*, 53:117, 1990.CrossRefGoogle Scholar - U. Schumann and T. Gerz. Turbulent mixing in stably stratified shear flows.
*J. Appl. Meteor.*, 34:33, 1995.ADSCrossRefGoogle Scholar - L. H. Shih, J. R. Koseff, J. H. Ferziger, and C. R. Rehmann. Scaling and parameterization of stratified homogeneous turbulent shear flow.
*J. Fluid Mech.*, 412:1–20, 2000.MATHCrossRefADSGoogle Scholar - M. T. Stacey, S. G. Monismith, and J. R. Barua. Observations of turbulence in a partially stratified estuary.
*J. Phys. Oceanogr.*, 29:1950–1970, 1999.CrossRefADSGoogle Scholar - S. Tavoularis and U. Karnik. Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence.
*J. Fluid Mech.*, 204:457–478, 1989.CrossRefADSGoogle Scholar - J. Taylor, S. Sarkar, and V. Armenio. Large eddy simulation of stably stratified open channel flow,
*submitted*, 2005.Google Scholar - K. B. Winters and E. A. DAsaro. Diascalar flux and the rate of fluid mixing.
*J. Fluid Mech.*, 317:179–193, 1996.MATHCrossRefADSGoogle Scholar - K. B. Winters, P. N. Lombard, J. J. Riley., and E. A. DAsaro. Available potential energy and mixing in density-stratified fluids.
*J. Fluid Mech.*, 289:115–128, 1995.MATHCrossRefADSMathSciNetGoogle Scholar

## Copyright information

© CISM, Udine 2005