Internal gravity waves in geophysical fluids

  • Chantal Staquet
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 479)


In this second Chapter, we recall some basic notions on stably-stratified flows before focusing on internal gravity wave dynamics. In Section 1, we illustrate the occurence of stably-stratified flows in nature and, in Section 2, we derive the Boussinesq approximation. Except for a very brief presentation of the Kelvin-Helmholtz instability in Section 3, we start discussing about internal gravity waves from this section on. The linear properties of the wave are discussed in this Section. The mechanisms that can lead the wave field to breaking are addressed in Sections 4 to 6: parametric and buoyancy-induced instabilities (Section 4), interaction with a shear flow (Section 5), interaction with a sloping boundary (Section 6). We briefly discuss about the statistical properties of the breaking wave field in Section 7 and introduce some notions on mixing in Section 8.


Primary Wave Wave Packet Shear Flow Internal Wave Richardson Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. G. Andrews, J. R. Holton, and C. B. Leovy. Middle atmosphere dynamics. Academic Press, 1987.Google Scholar
  2. S. I. Badulin and V. I. Shrira. On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. part 1. local analysis. J. Fluid Mech., 251:21–53, 1993.MATHCrossRefADSMathSciNetGoogle Scholar
  3. S. I. Badulin, V. I. Shrira, and L. S. Tsimring. The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. J. Fluid Mech., 158:199–218, 1985.MATHCrossRefADSGoogle Scholar
  4. S. I. Badulin, V. M. Vasilenko, and N. N. Golenko. Transformation of internal waves in the equatorial lomonosov current. Atmospheric and Oceanic Physics., 26(2): 110–117, 1990.Google Scholar
  5. K. Ball. Energy transfer between external and internal gravity waves. J. Fluid Mech., 19:465–478, 1964.MATHCrossRefADSMathSciNetGoogle Scholar
  6. J. Barat and C. Cot. Wind shear rotary spectra in the atmosphere. Geophys. Res. Letters., 19(2):103–106, 1992.ADSCrossRefGoogle Scholar
  7. A. Y. Basovich and L. S. Tsimring. Internal waves in a horizontally inhomogeneous flow. J. Fluid Mech., 142:233–49, 1984.MATHCrossRefADSMathSciNetGoogle Scholar
  8. D. Benielli and J. Sommeria. Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech., 374:117–144, 1998.MATHCrossRefADSMathSciNetGoogle Scholar
  9. S. Bony, J.-P. Duvel, and H. Le Treut. Observed dependence of the water vapor and clear-sky greenhouse effect on sea-surface temperature: comparison with climate warming experiments. Climate Dynamics, 11:307–320, 1995.CrossRefADSGoogle Scholar
  10. J. R. Booker and F. P. Bretherton. The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27:513–539, 1967.MATHCrossRefADSGoogle Scholar
  11. P. Bouruet-Aubertot, J. Sommeria, and C. Staquet. Stratified turbulence produced by internal wave breaking: two-dimensional numerical experiments. Dyn. Atmos. Oceans, 23:357, 1996.CrossRefADSGoogle Scholar
  12. F. P. Bretherton. The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Met. Soc, 92:466–480, 1966.CrossRefADSGoogle Scholar
  13. F. P. Bretherton. Propagation in slowly varying waveguides. Proc. Roy. Soc. A, 302:555–576, 1968.ADSCrossRefGoogle Scholar
  14. G. F. Carnevale, M. Briscolini, and P. Orlandi. Buoyancy-to inertial-range transition in forced stratified turbulence. J. Fluid Mech., 427:205–239, 2001.MATHCrossRefADSMathSciNetGoogle Scholar
  15. S. Chandrashekar. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon press, 1961.Google Scholar
  16. B. Cushman-Roisin. Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 1994.Google Scholar
  17. F. Dalaudier, C. Sidi, M. Crochet, and J. Vernin. Direct evidence of “sheets” in the atmospheric temperaturefield. J. Atmosph. Sciences, 51:237–248, 1994.CrossRefADSGoogle Scholar
  18. T. Dauxois and W. R. Young. Near-critical reflection of internal waves. J. Fluid Mech., 390:271–295, 1999.MATHCrossRefADSMathSciNetGoogle Scholar
  19. P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press, Cambridge, 1981.MATHGoogle Scholar
  20. P.G. Drazin. On the parametric instability of an internal gravity wave. Proc. R. Soc. Lond. A, 356:411, 1977.MATHADSMathSciNetCrossRefGoogle Scholar
  21. T. J. Dunkerton. Shear instability of internal inertia-gravity waves. J. Atmos. Sciences, 54:1628, 1997.CrossRefADSMathSciNetGoogle Scholar
  22. N. R. E. Edwards and C. Staquet. Focusing of an inertia-gravity wave packet by a baroclinic shear flow. Dynamics of Atmospheres and Oceans, In press, 2005.Google Scholar
  23. A. Eliassen and E. Palm. On the transfer of energy in stationary mountain waves. Geofys. Publ, 22(3):1–23, 1961.MathSciNetGoogle Scholar
  24. D. M. Farmer and L. Armi. Stratified flow over topography: the role of small scale entrainment and mixing in flow establishment. Proc. Roy. Soc, London A, 455:3221–3258, 1999.MATHADSMathSciNetCrossRefGoogle Scholar
  25. D.C. Fritts, J.R. Isler, and O. Andreassen. Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99(D4):8109–8123, 1994.CrossRefADSGoogle Scholar
  26. C. Garrett and W. Munk. Internal waves in the ocean. Ann. Rev. Fluid Mech., 11:339–369, 1979.CrossRefADSGoogle Scholar
  27. T. Gerkema. Application of an internal-tide generation model to baroclinic spring-neap cycles. J. Geophys. Res., 107(C9):3124, 2002.CrossRefADSGoogle Scholar
  28. T. Gerkema, C. Staquet, and P. Bouruet-Aubertot. Nonlinear effects in internal-tide beams, and mixing. Ocean modelling, Accepted for publication, 2005.Google Scholar
  29. M. Gregg. Diapycnal mixing in the thermocline: a review. J. Geophys. Res., 92(C5):5249–5286, 1987.ADSCrossRefGoogle Scholar
  30. I.A. Hannoun and E. J. List. Turbulent mixing at a shear-free density interface. J. Fluic Mech., 189:211–234, 1988.CrossRefADSGoogle Scholar
  31. K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum. Part 1: General theory. J. Fluid Mech., 12:481–500, 1962.MATHCrossRefADSMathSciNetGoogle Scholar
  32. K. Hasselmann. A criterion for nonlinear wave stability. J. Fluid Mech., 30:737, 1967.MATHCrossRefADSGoogle Scholar
  33. P. Hazel. Numerical studies of the stability of inviscid stratified shear flows. J. Fluic Mech., 51:39–61, 1972.MATHCrossRefADSGoogle Scholar
  34. G. J. F. van Heijst, R. C. Kloosterziel, and C. W. M. Williams. Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech., 225:301–331, 1991.CrossRefADSGoogle Scholar
  35. D Holliday and M. E. McIntyre. On potential energy density in an incompressible stratified fluid. J. Fluid Mech., 107:221–225, 1981.MATHCrossRefADSGoogle Scholar
  36. G. Holloway. Oceanic internal waves are not weak waves. J. Phys. Oceanogr., 10:906–914 1980.CrossRefADSGoogle Scholar
  37. G. Holloway and D. Ramsden. Theories of internal wave interaction and stably stratified turbulence: testing against numerical simulations. In J. C. Nihoul and B.M. Jamard, editors, Small-scale Turbulence and Mixing in the Ocean,’ Aha Huliko’a Hawaiian Winter Workshop, pages 363–377. Elsevier, New-York, 1988.CrossRefGoogle Scholar
  38. L. N. Howard. Note on a paper of John w. miles. J. Fluid Mech., 10:509–512, 1961.MATHCrossRefADSMathSciNetGoogle Scholar
  39. Y. A. Ivanov and Y. G. Morozov. Deformation of internal gravity waves by a stream with horizontal shear. Okeanologie, 14:457–461, 1974.Google Scholar
  40. G. N. Ivey, K. B. Winters, and I. P. D. De Silva. Turbulent mixing in a sloping benthic boundary layer energized by internal waves. J. Fluid Mech., 418:59–76, 2000.MATHCrossRefADSGoogle Scholar
  41. W. J. Jones. Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30:439–449, 1967.MATHCrossRefADSGoogle Scholar
  42. W. J. Jones. Reflexion and stability of waves in stably stratified fluids with shear flow: a numerical study. J. Fluid Mech., 34:609–624, 1968.MATHCrossRefADSGoogle Scholar
  43. P. Klein, B. L. Hua, and X. Carton. Emergence of cyclonic structures due to the interaction between near-inertial oscillations and mesoscale eddies. Quart. J. Roy. Met. Soc, 129:1–20, 2003.CrossRefADSGoogle Scholar
  44. J. Klostermeyer. Parametric instabilities of internal gravity waves in boussinesq fluids wit large reynolds numbers. Geophys. Astrophys. Fluid. Dyn., 26:85, 1983.MATHADSMathSciNetCrossRefGoogle Scholar
  45. J. Klostermeyer. Two and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 61:1, 1991.ADSCrossRefGoogle Scholar
  46. C. G. Koop. A preliminary investigation of the interaction of internal gravity waves with a steady shearing motion. J. Fluid Mech., 113:347–386, 1981.CrossRefADSMathSciNetGoogle Scholar
  47. C. G. Koop and B. McGee. Measurements of internal gravity waves in a continuously stratified shear flow. J. Fluid Mech., 172:453–480, 1986.CrossRefADSGoogle Scholar
  48. C. R. Koudella. Ondes internes de gravité: instabilités, déferlement et vorticité potentielle. PhD thesis, École Normale Supérieure de Lyon, France, 1999.Google Scholar
  49. C. R. K. Koudella and C. Staquet. Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech., submitted, 2005.Google Scholar
  50. P. H. Leblond and L. A. Mysak. Waves in the Ocean. Number 20 in Elsevier Oceanography Series. Elsevier Scientific Publishing Company, 1978.Google Scholar
  51. M. P. Lelong and T. J. Dunkerton. Inertia-gravity wavesbreaking in three dimensions: 2. convectively unstable waves. J. Atmos. Sci., 55(15):2489, 1998.CrossRefADSMathSciNetGoogle Scholar
  52. M. Lesieur. Turbulence in Fluids. Kluwer Academic Publishers, 3 edition, 1997.Google Scholar
  53. M.J. Lighthill. Waves in Fluids. Cambridge University Press, 1978.Google Scholar
  54. P.N. Lombard and J.J. Riley. Instability and breakdown of internal gravity waves. I. linear stability analysis. Phys. Fluids, 8(12):3271, 1996.MATHCrossRefADSGoogle Scholar
  55. E.N. Lorenz. Available potential energy and the maintenance of the general circulation. Tellus, 7:157–167, 1955.ADSCrossRefGoogle Scholar
  56. F. Lott. Comparison between the orographic response of the ecmwf model and the pyrex 1990 data. Quarterly Journal of the Royal Meteorological Society, 121:1323–1348, 1995.CrossRefADSGoogle Scholar
  57. L. R. M. Maas, D. Benielli, J. Sommeria, and F.-P. A. Lam. Observation of an internal wave attractor in a confined, stably stratified fluid. Nature, 388:557, 1997.CrossRefADSGoogle Scholar
  58. L. R. M. Maas and F.-P. A. Lam. Geometric focusing of internal waves. J. Fluid Mech., 300:1–41, 1995.MATHCrossRefADSMathSciNetGoogle Scholar
  59. J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A finite-volume, incompressible navier-stokes model for studies of the ocean on parallel computers. J. Geophys Res., 102(C3):5753–5766, 1997.CrossRefADSGoogle Scholar
  60. C. H. McComas and F. P. Bretherton. Resonant interactions of oceanic internal waves. J. Geophys. Res., 82:1397–1411, 1977.ADSCrossRefGoogle Scholar
  61. A.D. McEwan. Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech., 50:431–448, 1971.MATHCrossRefADSGoogle Scholar
  62. A.D. McEwan and R.A. Plumb. Off-resonant amplification of finite internal wave packets. Dyn. Atmos. Ocean, 2:83–105, 1977.CrossRefADSGoogle Scholar
  63. A.D. McEwan and R. M. Robinson. Parametric instability of internal gravity waves. J. Fluid Mech., 67(4):667–687, 1975.MATHCrossRefADSGoogle Scholar
  64. M. E. Mclntyre. The stratospheric polar vortex and sub-vortex: fluid dynamics and mid-latitude ozone loss. Phil. Trans. Roy. Soc. London, 352:227–240, 1995.ADSCrossRefGoogle Scholar
  65. M. E. McIntyre. On global-scale atmospheric circulations. In G. K. Batchelor, H. K. Mofatt, and M. G. Worster, editors, Perspectives in Fluid Dynamics, pages 557–624. Cambridge University Press, 2000.Google Scholar
  66. M. E. McIntyre and W. A. Norton. Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech., 212:403–435, 1990.MATHCrossRefADSMathSciNetGoogle Scholar
  67. E.E. McPhee-Shaw and E. Kunze. Boundary-layer intrusions from a sloping bottom: A mechanism for generating intermediate nepheloid layers. J. Geophys. Res., 107:DOI:10.1029/2001JC000801, 2002.Google Scholar
  68. R.P. Mied. The occurence of parametric instabilities in finite-amplitude internal gravity waves. J. Fluid Mech., 78:763–784, 1976.MATHCrossRefADSGoogle Scholar
  69. T. Miyazaki and K. Adachi. Short-wavelength instabilities of waves in rotating stratified fluids. Phys. Fluids, 10(12):3168–3177, 1998.CrossRefADSMathSciNetMATHGoogle Scholar
  70. D. E. Mowbray and B. S. H. Rarity. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech., 28:1–16, 1967.CrossRefADSGoogle Scholar
  71. W. Munk and C. Wunsch. Abyssal recipes ii: energetics of tidal and wind mixing. Deep-Sea Research I, 45:1977, 1998.CrossRefGoogle Scholar
  72. W. H. Munk. A survey of internal waves and small scale processes. In B. A. Warren and C. Wunsch, editors, Evolution of Physical Oceanography, pages 264–291. MIT Press, Cambridge, Mass., 1981.Google Scholar
  73. P. Muller, G. Holloway, F. Henyey, and N. Pomphrey. Nonlinear interactions among internal gravity waves. Rev. Geophys., 24(3):493–536, 1986.ADSCrossRefGoogle Scholar
  74. D.J. Olbers. The propagation of internal waves in a geostrophic current. J. Phys. Oceanogr., 11:1224–1233, 1981.CrossRefADSGoogle Scholar
  75. M. C. Oilers, L. P. J. Kamp, F. Lott, P. F. J. van Velthoven, H. M. Kelder, and F. W. Sluijter. Propagation properties of inertia-gravity waves through a barotropic shear layer and application to the antarctic polar vortex. Quartely Journal of the Royal Meteorological Society, 129:2495–2911, 2003.CrossRefADSGoogle Scholar
  76. T. Peacock and A. Tabaei. Visualization of nonlinear effects in reflecting internal wave beams. Phys. Fluids, Accepted for publication, 2005.Google Scholar
  77. T. Peacock and P. Weidman. The effect of rotation on conical wave beams in a stratified fluid. Expts. Fluids, To appear, 2005.Google Scholar
  78. O. M. Phillips. On the dynamics of unsteady gravity waves of finite amplitude, i. J. Fluid Mech., 9:193–217, 1960.MATHCrossRefADSMathSciNetGoogle Scholar
  79. O. M. Phillips. Wave interactions-the evolution of an idea. J. Fluid Mech., 106:215–227, 1981.MATHCrossRefADSGoogle Scholar
  80. O.M. Phillips. The dynamics of the upper ocean. Cambridge University Press, 1966.Google Scholar
  81. R. Plougonven, H. Teitelbaum, and V. Zeitlin. Inertia-gravity wave generation by the tropospheric mid-latitude jet as given by the fastex radiosoundings. Journal of Geophysical Research, 108(D21):4686, 2003.CrossRefGoogle Scholar
  82. J. M. Rees, J. C. W. Denholm-Price, J. C. King, and P. S. Anderson. A climatological study of internal gravity waves in the atmospheric boundary layer overlying the brunt ice shelf, antarctica. Journal of the Atmospheric Sciences, 57:511–526, 2000.CrossRefADSGoogle Scholar
  83. E. Schatzman. Diffusion process produced by random internal waves. J. Fluid Mech., 322:355–382, 1996.MATHCrossRefADSMathSciNetGoogle Scholar
  84. D. G. Schowalter, J. C. Lasheras, and C. W. van Atta. A study of streamwise vortex structures in a stratified shear layer. J. Fluid Mech., 281:247–291, 1994.CrossRefADSMathSciNetGoogle Scholar
  85. D. N. Slinn and J. J. Riley. Turbulent dynamics of a critically reflecting internal gravity wave. Theor. Comp. Fluid Dyn., 11:281–303, 1998.MATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Chantal Staquet
    • 1
  1. 1.Laboratoire des Ecoulements Géophysiques et IndustrielsUniversité Joseph FourierGrenobleFrance

Personalised recommendations