Skip to main content

Mathematical modeling of Stratified flows

  • Chapter
Environmental Stratified Flows

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 479))

Abstract

The present Chapter of the lecture notes is divided into three different sections. The first section is devoted to the description of the equations governing a stratified flow field. The Reynolds averaged equations are derived together with the transport equations for the mean and turbulent kinetic energies. A background discussion on the spectral characteristics of a turbulent field is given, aimed at helping the comprehension of the successive sections. The second section describes the direct numerical simulation, together with the numerical techniques currently in use for the integration of the governing equations. Section 2 also contains a brief discussion on recent achievements of DNS in the study of stratified turbulent flows. Section 2 also deals with Large-eddy simulation of stratified turbulent flows. Models widely in use for the closure of the subgrid scale stresses are described and recent achievements in the field of stratified flows discussed. Section 3 is devoted to the description of very recent numerical results for stratified flows over a topography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Andrén, A.R. Brown, J. Graf, P.J. Mason, C.H. Moeng, F.T.M. Nieuwstadt, and U. Schumann. Large-eddy simulation of neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc, 120:1457, 1994.

    Article  ADS  Google Scholar 

  • A. Andrén and C.H. Moeng. Single-point closure in neutrally stratified boundary layer. J. Atmos. Sci., 50:3366, 1993.

    Article  ADS  Google Scholar 

  • V. Armenio. An improved mac method (simac) for unsteady high-reynolds free surface flows. Int. J. Num. Meth. in Fluids, 24:185, 1997.

    Article  MATH  ADS  Google Scholar 

  • V. Armenio, L. Falcomer, and G.F. Carnevale. Les of a stably stratified flow over longitudinally ridged walls. In Direct and Large-Eddy simulation V, page 299. R. Friedrich, B.J. Geurts and O. Metais editors, Kluwer Academic Publishers, 2003.

    Google Scholar 

  • V. Armenio and U. Piomelli. A lagrangian mixed subgrid-scale model in generalized coordinates. Flow Turbulence Combust., 65:51, 2000.

    Article  MATH  Google Scholar 

  • V. Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459:1, 2002.

    Article  MATH  ADS  Google Scholar 

  • V. Armenio and S. Sarkar. Mixing in a stably stratified medium by horizontal shear near vertical walls. Theoret. Comput. Fluid Dyn., to appear, 2004.

    Google Scholar 

  • S.P.S. Arya. Buoyancy effects in an horizontal flat-plane boundary layer. J. Fluid Mech., 68:321, 1975.

    Article  ADS  Google Scholar 

  • P.G. Baines. Topographic effects in stratified flows. Cambridge university press, 1995.

    Google Scholar 

  • N.J. Balmforth, G.R. Ierley, and W.R. Young. Tidal conversion by subcritical topography. J. Phys. Oceanogr., 68:2900, 2002.

    Article  ADS  Google Scholar 

  • J. Bardina, J.H. Ferziger, and W.C. Reynolds. Improved subgrid scale models for large eddy simulation. In AIAA paper No 80-1357, 1980.

    Google Scholar 

  • J. Bardina, J.H. Ferziger, and R.S. Rogallo. Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., 154:321, 1985.

    Article  ADS  Google Scholar 

  • T.H. Bell. Topographically generated internal waves in the open ocean. J. Geophys. Res., 80:320, 1975.

    Article  ADS  Google Scholar 

  • A.R. Brown, S.H. Derbyshire, and P.J. Mason. Large eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Q.J.R. Meteorol., 120:1485, 1994.

    Article  ADS  Google Scholar 

  • W. Cabot and P. Moin. Large eddy simulation of scalar transport with the dynamic subgrid-scale model. In Large Eddy Simulation of Complex Engineering and Geophisical Flows, page 141. Cambridge University Press, 1993.

    Google Scholar 

  • R.J. Calhoun and R.L. Street. Turbulent flow over a wavy surface: Neutral case. J. Geophys. Res-Ocean, 106:9277, 2001.

    Article  ADS  Google Scholar 

  • R.J. Calhoun, R.L. Street, and J.R. Koseff. Turbulent flow over a wavy surface: Stratified case. J. Geophys. Res-Ocean, 106:9295, 2001.

    Article  ADS  Google Scholar 

  • G.N. Coleman, J.H. Ferziger, and P.R. Spalart. A numerical study of the turbulent ekman boundary layer. J. Fluid Mech., 213:313, 1990.

    Article  ADS  Google Scholar 

  • G.N. Coleman, J.H. Ferziger, and P.R. Spalart. A numerical study of the stably stratified turbulent ekman layer. J. Fluid Mech., 244:677, 1992.

    Article  ADS  Google Scholar 

  • S. Corrsin. On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. AppL Phys., 22:469–473, 1951.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • J.W. Deardoff. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluid Engineering, Trans. ASME, 95:429, 1973.

    Article  Google Scholar 

  • J.W. Deardoff. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol, 18:495, 1980.

    Article  ADS  Google Scholar 

  • L. Ding, R.J. Calhoun, and R.L.V. Street. Numerical simulation of strongly stratified flow over three-dimensional hill. Bound-Layer Meteor., 107:81, 2003.

    Article  ADS  Google Scholar 

  • P.G. Drazin. On the steady flow of a fluid of variable density past an obstacle. Tellus, 13:239, 1961.

    Article  ADS  Google Scholar 

  • D.W. Denbo and E.D. Skyllingstad. An ocean large-eddy simulation model with application to deep convection in greenland sea. J. Geophysical Research, 101:1095, 1996.

    Article  ADS  Google Scholar 

  • T.M. Eidson. Numerical simulation of turbulent rayleigh-benard convection using subgrid scale modeling. J. Fluid Mech., 158:245, 1985.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys., 161:35, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • L. Falcomer and V. Armenio. Large-eddy simulation of secondary flow over longitudinally ridged walls. J. Turbulence, 3:008, 2002.

    Article  ADS  Google Scholar 

  • R.P. Garg. Pysics and modeling of stratified turbulent channel flows. Ph.D thesis, Stanford University, 1996.

    Google Scholar 

  • R.P. Garg, J.H. Ferziger, and S.G. Monismith. Hybrid spectral finite difference simulations of stratified turbulent flows on distributed memory architectures. Int. J. Num. Meth. in Fluids, 24:1129, 1997.

    Article  MATH  ADS  Google Scholar 

  • R.P. Garg, J.H. Ferziger, S.G. Monismith, and J.R. Koseff. Stably stratified turbulent channel flows, i. stratification regimes and turbulence suppression mechanism. Phys. Fluids, 12:2569, 2000.

    Article  ADS  Google Scholar 

  • M. Germano. The filtering approach. J. Fluid Mech., 238:325, 1992.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic sub-grid eddy viscosity model. Phys. Fluids A, 3:1760, 1991.

    Article  MATH  ADS  Google Scholar 

  • T. Gerz, U. Schumann, and S.E. Elgobashi. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200:563, 1989.

    Article  MATH  ADS  Google Scholar 

  • J.R. Herring and O. Metais. Numerical experiments in forced stably stratified turbulence. J. Fluid Mech., 202:97, 1989.

    Article  ADS  Google Scholar 

  • J.O. Hinze. Turbulence. McGraw Hill, 1976.

    Google Scholar 

  • S.E. Holt, J.R. Koseff, and J.H. Ferziger. A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237:499, 1992.

    Article  MATH  ADS  Google Scholar 

  • J.C.R. Hunt and W.H. Snyder. Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96:671, 1980.

    Article  ADS  Google Scholar 

  • F.G. Jacobitz and S. Sarkar. The effect of non-vertical shear on turbulence in a stably stratified medium. J. Fluid Mech., 10:1158, 1998.

    MathSciNet  MATH  Google Scholar 

  • F.G. Jacobitz, S. Sarkar, and C.W. Van Atta. Direct numerical simulation of the turbulence evolution in a uniformly sheared and and stably stratified. J. Fluid Mech., 342:231, 1997.

    Article  MATH  ADS  Google Scholar 

  • S.A. Jordan. A large-eddy simulation methodology in generalized coordinates. J. Comput. Phys., 148:322, 1999.

    Article  MATH  ADS  Google Scholar 

  • H.-J. Kaltenbach, T. Gerz, and U. Schumann. Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280:1, 1994.

    Article  MATH  ADS  Google Scholar 

  • L.H. Kantha and C.A. Clayson. Small scale processes in geophysical fluid flows. Academic Press, 2000.

    Google Scholar 

  • J. Kim and P. Moin. Application of a fractional step to incompressible navier-stokes equations. J. Comp. Phys., 59:308, 1985.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • J. Kim, P. Moin, and R.D. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177:133, 1987.

    Article  MATH  ADS  Google Scholar 

  • Y. Kimura and J.R. Herring. Diffusion in stbly stratified turbulence. J. Fluid Mech., 328:253, 1996.

    Article  MATH  ADS  Google Scholar 

  • A.N. Kolmogorov. Energy dissipation in locally isotropic turbulence (in russian). Dokl. Akad. Nauk. SSSR, 32:19–21, 1941a.

    Google Scholar 

  • A.N. Kolmogorov. Local structure of turbulence in an incompressible fluid at very high reynolds numbers (in russian). Dokl. Akad. Nauk. SSSR, 30:299–303, 1941b.

    ADS  Google Scholar 

  • S. Komori, H. Ueda, F. Ogino, and T. Mizushina. Turbulent structure in a stably stratified open-channel flow. J. Fluid Mech., 130:13, 1983.

    Article  ADS  Google Scholar 

  • A.G. Kravchenko, P. Moin, and R. Moser. Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys., 127:412, 1996.

    Article  MATH  ADS  Google Scholar 

  • B.E. Launder. On the effects of a gravitational field on the turbulence transport of heat and momentum. J. Fluid Mech., 67:569, 1975.

    Article  ADS  Google Scholar 

  • S. Legg. Internal tides generated on a corrugated continental slope, part 1: Cross-slope barotropic forcing. J. Phys Oceanogr., 34:156, 2004a.

    Article  MathSciNet  ADS  Google Scholar 

  • S. Legg. Internal tides generated on a corrugated continental slope, part 2: Along-slope barotropic forcing. J. Phys Oceanogr., in press, 2004b.

    Google Scholar 

  • S. Legg and A.J. Adcroft. Internal wave breaking on concave and convex continental slopes. J. Phys Oceanogr., 33:2224, 2004.

    Article  MathSciNet  ADS  Google Scholar 

  • D.K. Lilly. The representation of small scale turbulence in numerical simulation experiments. In IBM Sci. Comput. Symposium Environ. Sci.,, page 195. IBM Form 320–195, 1967.

    Google Scholar 

  • D.K. Lilly. A proposed modification of the germano sub-grid scale closure method. Phys. Fluids A, 4:633, 1992.

    Article  ADS  Google Scholar 

  • S.G. Llewellyn-Smith and W.R. Young. Conversion of the barotropic tide. J. Phys. Oceanogr., 32:1554, 2002.

    Article  MathSciNet  ADS  Google Scholar 

  • S.G. Llewellyn-Smith and W.R. Young. Tidal conversion at a very steep ridge. J. Fluid Mech., 495:175, 2003.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P.J. Mason and A.R. Brown. The sensitivity of large-eddy simulations of turbulent shear-flow to subgrid models. Boundary-Layer Meteor., 70:133, 1994.

    Article  ADS  Google Scholar 

  • P.J. Mason and S.H. Derbyshire. Large-eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Meteor., 53:117, 1990.

    Article  ADS  Google Scholar 

  • P.J. Mason and D.J. Thomson. Stochastic backscatter in large-eddy simulations of boundary-layers. J. Fluid Mech., 242:51, 1992.

    Article  MATH  ADS  Google Scholar 

  • C. Meneveau, T.S. Lund, and W.H. Cabot. A lagrangian dynamic sub-grid scale model of turbulence. J. Fluid Mech., 319:353, 1996.

    Article  MATH  ADS  Google Scholar 

  • F.J. Millero and A. Poisson. International one-athmosphere equation of state of seawater. Deep Sea Research, 27A:255–264, 1981.

    Google Scholar 

  • D.V. Mironov, V.M. Gryanik, C.H. Moeng, D.J. Olbers, and T.H. Warncke. Vertical turbulence structure and second-moment budgets in convection with rotation: A large-eddy simulation study. Q J Roy. Meteor. Soc, 126:477, 2000.

    Article  ADS  Google Scholar 

  • R. Mittal and P. Moin. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J., 35:1415, 1997.

    Article  MATH  ADS  Google Scholar 

  • C.H. Moeng. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41:2052, 1984.

    Article  ADS  Google Scholar 

  • C.H. Moeng and P.P. Sullivan. A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51:999, 1994.

    Article  ADS  Google Scholar 

  • P. Moin and K. Mahesh. Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech., 30:539, 1998.

    Article  ADS  MathSciNet  Google Scholar 

  • A.S. Monin and A.M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  • F.T.M. Nieuwstadt. The turbulent structure of the stable, nocturnl boundary layer. J. Atmos. Sci., 41:2202, 1986.

    Article  ADS  Google Scholar 

  • F.T.M. Nieuwstadt and R.A. Brost. The decay of convective turbulence. J. Atmos. Sci., 43:532, 1986.

    Article  ADS  Google Scholar 

  • F.T.M. Nieuwstadt, P.J. Mason, C.H. Moeng, and U. Schumann. Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In Turbulent shear flows 8, page 313. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  • A.M. Obukhov. The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR. Ser Geogr. Geophys., 13:58, 1949.

    Google Scholar 

  • I. Orlansky. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys., 21:251, 1976.

    Article  ADS  Google Scholar 

  • F. Petrelis, S.G. Llewellyn-Smith, and W.R. Young. Tidal conversion at a submarine ridge. J. Phys. Oceanogr, submitted, 2004.

    Google Scholar 

  • O.M. Phillips. On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res., 17:435, 1970.

    Google Scholar 

  • U. Piomelli. High reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A, 5:1484, 1993.

    Article  ADS  Google Scholar 

  • U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Ann. Rev. Fluid Mech., 34:349, 2002.

    Article  ADS  MathSciNet  Google Scholar 

  • U. Piomelli and J.R. Chasnov. Large-eddy simulations: theory and applications. In Transition and turbulence modelling, page 269. edited by D. Henningson, M. Hallbäck, H. Alfreddson and A. Johansson, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  • M.M. Rai and P. Moin. Direct simulations of turbulent-flow using finite-difference schemes. J. Comp. Phys., 96:15, 1991.

    Article  MATH  ADS  Google Scholar 

  • W.C. Reynolds. In in Whither Turbulence? Turbulence at the Crossroads, page 313. Springer-Verlag, Heidelberg, 1990.

    Book  Google Scholar 

  • S.G. Saddoughi and S.V. Veeravalli. Local isotropy in turbulent boundary layers at high reynolds number. J. Fluid Mech., 268:333, 1994.

    Article  ADS  Google Scholar 

  • A.M. Saiki, C.H. Moeng, and P.S. Sullivan. Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol., 95:1, 2000.

    Article  ADS  Google Scholar 

  • S. Salon. Turbulent mixing in the gulf of trieste under critical conditions. Ph.D thesis, Dipartimento di Ingegneria Civile, Universitá di Trieste, 2004.

    Google Scholar 

  • H. Schmidt and U. Schumann. Coherent structure of the convective boundary layer derived from large-eddy simulation. J. Fluid Mech., 200:511, 1989.

    Article  MATH  ADS  Google Scholar 

  • D.N. Slinn and J.J. Riley. A model for the simulation of turbulent boundary layers in an incompressible stratified flow. J. Comput. Phys., 144:550, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J.S. Smagorinsky. General circulation experiments with primitive equations.i. the basic experiment. Mon. Weather Rev., 91:99, 1963.

    Article  ADS  Google Scholar 

  • W.D. Smyth and J.N. Mourn. Lenght-scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12:1327, 2000.

    Article  ADS  MATH  Google Scholar 

  • P.R. Spalart and J.H. Wattmuff. Experimental and numerical study of a turbulent boundary-layer with a pressure gradient. J. Fluid Mech., 249:337, 1993.

    Article  ADS  Google Scholar 

  • K.D. Squires. Detached-eddy simulation: current status and perspectives. In Direct and Large-Eddy simulation V, page 465. R. Friedrich, B.J. Geurts and O. Metais editors, Kluwer Academic Publishers, 2003.

    Google Scholar 

  • K.R. Sreenivasan. The passive scalar spectrum and the obukhov-corsin constant. Phys. Fluids, 8:189–196, 1996.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • C. Staquet. Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments. Fluid. Dyn. Res., 27:367, 2000.

    Article  ADS  Google Scholar 

  • P.P. Sullivan and J.C. McWilliams. Turbulent flow over water waves in the presence of stratification. Phys. Fluids, 14:1182, 2002.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P.P. Sullivan, J.C. McWilliams, and C.H. Moeng. A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol, 71: 247, 1994.

    Article  ADS  Google Scholar 

  • P.P. Sullivan, J.C. McWilliams, and C.H. Moeng. A grid-nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol., 80: 167, 1996.

    Article  ADS  Google Scholar 

  • J. Taylor, S. Sarkar, and V. Armenio. Large eddy simulation of stably stratified open channel flow, submitted, 2004a.

    Google Scholar 

  • J. Taylor, S. Sarkar, and V. Armenio. work in progress for les simulation of reflection of internal waves over a topography. 2004b.

    Google Scholar 

  • H. Tennekes and J.L. Lumley. A First Course in Turbulence. The MIT Press, Cambridge, MA, 1972.

    Google Scholar 

  • J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerical grid generation. North-Holland, 1985.

    Google Scholar 

  • C.A.G. Webster. An experimental study of turbulence in a density stratified shear flow. J. Fluid Mech., 19:221, 1964.

    Article  MATH  ADS  Google Scholar 

  • C. Wunsch. Internal tides in the ocean. Rev. Geophys., 13:167, 1975.

    Article  ADS  Google Scholar 

  • Y. Zang and R.L. Street. Numerical simulation of coastal upwelling and interfacial instability of a rotating and stratified fluid. J. Fluid Mech., 305:47, 1995.

    Article  MATH  ADS  Google Scholar 

  • Y. Zang, R.L. Street, and J. Koseff. A non-staggered grid, fractional step method for the time-dependent incompressible navier-stokes equations in curvilinear coordinates. J. Comp. Phys., 114:18, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Armenio, V. (2005). Mathematical modeling of Stratified flows. In: Armenio, V., Sarkar, S. (eds) Environmental Stratified Flows. CISM International Centre for Mechanical Sciences, vol 479. Springer, Vienna. https://doi.org/10.1007/3-211-38078-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-211-38078-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28408-7

  • Online ISBN: 978-3-211-38078-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics