Mathematical modeling of Stratified flows

  • Vincenzo Armenio
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 479)


The present Chapter of the lecture notes is divided into three different sections. The first section is devoted to the description of the equations governing a stratified flow field. The Reynolds averaged equations are derived together with the transport equations for the mean and turbulent kinetic energies. A background discussion on the spectral characteristics of a turbulent field is given, aimed at helping the comprehension of the successive sections. The second section describes the direct numerical simulation, together with the numerical techniques currently in use for the integration of the governing equations. Section 2 also contains a brief discussion on recent achievements of DNS in the study of stratified turbulent flows. Section 2 also deals with Large-eddy simulation of stratified turbulent flows. Models widely in use for the closure of the subgrid scale stresses are described and recent achievements in the field of stratified flows discussed. Section 3 is devoted to the description of very recent numerical results for stratified flows over a topography.


Turbulent Kinetic Energy Direct Numerical Simulation Internal Wave Eddy Viscosity Internal Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Andrén, A.R. Brown, J. Graf, P.J. Mason, C.H. Moeng, F.T.M. Nieuwstadt, and U. Schumann. Large-eddy simulation of neutrally stratified boundary layer: A comparison of four computer codes. Q. J. R. Meteorol. Soc, 120:1457, 1994.CrossRefADSGoogle Scholar
  2. A. Andrén and C.H. Moeng. Single-point closure in neutrally stratified boundary layer. J. Atmos. Sci., 50:3366, 1993.CrossRefADSGoogle Scholar
  3. V. Armenio. An improved mac method (simac) for unsteady high-reynolds free surface flows. Int. J. Num. Meth. in Fluids, 24:185, 1997.MATHCrossRefADSGoogle Scholar
  4. V. Armenio, L. Falcomer, and G.F. Carnevale. Les of a stably stratified flow over longitudinally ridged walls. In Direct and Large-Eddy simulation V, page 299. R. Friedrich, B.J. Geurts and O. Metais editors, Kluwer Academic Publishers, 2003.Google Scholar
  5. V. Armenio and U. Piomelli. A lagrangian mixed subgrid-scale model in generalized coordinates. Flow Turbulence Combust., 65:51, 2000.MATHCrossRefGoogle Scholar
  6. V. Armenio and S. Sarkar. An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459:1, 2002.MATHCrossRefADSGoogle Scholar
  7. V. Armenio and S. Sarkar. Mixing in a stably stratified medium by horizontal shear near vertical walls. Theoret. Comput. Fluid Dyn., to appear, 2004.Google Scholar
  8. S.P.S. Arya. Buoyancy effects in an horizontal flat-plane boundary layer. J. Fluid Mech., 68:321, 1975.CrossRefADSGoogle Scholar
  9. P.G. Baines. Topographic effects in stratified flows. Cambridge university press, 1995.Google Scholar
  10. N.J. Balmforth, G.R. Ierley, and W.R. Young. Tidal conversion by subcritical topography. J. Phys. Oceanogr., 68:2900, 2002.CrossRefADSGoogle Scholar
  11. J. Bardina, J.H. Ferziger, and W.C. Reynolds. Improved subgrid scale models for large eddy simulation. In AIAA paper No 80-1357, 1980.Google Scholar
  12. J. Bardina, J.H. Ferziger, and R.S. Rogallo. Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., 154:321, 1985.CrossRefADSGoogle Scholar
  13. T.H. Bell. Topographically generated internal waves in the open ocean. J. Geophys. Res., 80:320, 1975.ADSCrossRefGoogle Scholar
  14. A.R. Brown, S.H. Derbyshire, and P.J. Mason. Large eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Q.J.R. Meteorol., 120:1485, 1994.CrossRefADSGoogle Scholar
  15. W. Cabot and P. Moin. Large eddy simulation of scalar transport with the dynamic subgrid-scale model. In Large Eddy Simulation of Complex Engineering and Geophisical Flows, page 141. Cambridge University Press, 1993.Google Scholar
  16. R.J. Calhoun and R.L. Street. Turbulent flow over a wavy surface: Neutral case. J. Geophys. Res-Ocean, 106:9277, 2001.CrossRefADSGoogle Scholar
  17. R.J. Calhoun, R.L. Street, and J.R. Koseff. Turbulent flow over a wavy surface: Stratified case. J. Geophys. Res-Ocean, 106:9295, 2001.CrossRefADSGoogle Scholar
  18. G.N. Coleman, J.H. Ferziger, and P.R. Spalart. A numerical study of the turbulent ekman boundary layer. J. Fluid Mech., 213:313, 1990.CrossRefADSGoogle Scholar
  19. G.N. Coleman, J.H. Ferziger, and P.R. Spalart. A numerical study of the stably stratified turbulent ekman layer. J. Fluid Mech., 244:677, 1992.CrossRefADSGoogle Scholar
  20. S. Corrsin. On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. AppL Phys., 22:469–473, 1951.CrossRefMathSciNetMATHADSGoogle Scholar
  21. J.W. Deardoff. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluid Engineering, Trans. ASME, 95:429, 1973.CrossRefGoogle Scholar
  22. J.W. Deardoff. Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol, 18:495, 1980.CrossRefADSGoogle Scholar
  23. L. Ding, R.J. Calhoun, and R.L.V. Street. Numerical simulation of strongly stratified flow over three-dimensional hill. Bound-Layer Meteor., 107:81, 2003.CrossRefADSGoogle Scholar
  24. P.G. Drazin. On the steady flow of a fluid of variable density past an obstacle. Tellus, 13:239, 1961.CrossRefADSGoogle Scholar
  25. D.W. Denbo and E.D. Skyllingstad. An ocean large-eddy simulation model with application to deep convection in greenland sea. J. Geophysical Research, 101:1095, 1996.CrossRefADSGoogle Scholar
  26. T.M. Eidson. Numerical simulation of turbulent rayleigh-benard convection using subgrid scale modeling. J. Fluid Mech., 158:245, 1985.MATHCrossRefADSMathSciNetGoogle Scholar
  27. E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys., 161:35, 2000.MATHCrossRefADSMathSciNetGoogle Scholar
  28. L. Falcomer and V. Armenio. Large-eddy simulation of secondary flow over longitudinally ridged walls. J. Turbulence, 3:008, 2002.CrossRefADSGoogle Scholar
  29. R.P. Garg. Pysics and modeling of stratified turbulent channel flows. Ph.D thesis, Stanford University, 1996.Google Scholar
  30. R.P. Garg, J.H. Ferziger, and S.G. Monismith. Hybrid spectral finite difference simulations of stratified turbulent flows on distributed memory architectures. Int. J. Num. Meth. in Fluids, 24:1129, 1997.MATHCrossRefADSGoogle Scholar
  31. R.P. Garg, J.H. Ferziger, S.G. Monismith, and J.R. Koseff. Stably stratified turbulent channel flows, i. stratification regimes and turbulence suppression mechanism. Phys. Fluids, 12:2569, 2000.CrossRefADSGoogle Scholar
  32. M. Germano. The filtering approach. J. Fluid Mech., 238:325, 1992.MATHCrossRefADSMathSciNetGoogle Scholar
  33. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic sub-grid eddy viscosity model. Phys. Fluids A, 3:1760, 1991.MATHCrossRefADSGoogle Scholar
  34. T. Gerz, U. Schumann, and S.E. Elgobashi. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200:563, 1989.MATHCrossRefADSGoogle Scholar
  35. J.R. Herring and O. Metais. Numerical experiments in forced stably stratified turbulence. J. Fluid Mech., 202:97, 1989.CrossRefADSGoogle Scholar
  36. J.O. Hinze. Turbulence. McGraw Hill, 1976.Google Scholar
  37. S.E. Holt, J.R. Koseff, and J.H. Ferziger. A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237:499, 1992.MATHCrossRefADSGoogle Scholar
  38. J.C.R. Hunt and W.H. Snyder. Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96:671, 1980.CrossRefADSGoogle Scholar
  39. F.G. Jacobitz and S. Sarkar. The effect of non-vertical shear on turbulence in a stably stratified medium. J. Fluid Mech., 10:1158, 1998.MathSciNetMATHGoogle Scholar
  40. F.G. Jacobitz, S. Sarkar, and C.W. Van Atta. Direct numerical simulation of the turbulence evolution in a uniformly sheared and and stably stratified. J. Fluid Mech., 342:231, 1997.MATHCrossRefADSGoogle Scholar
  41. S.A. Jordan. A large-eddy simulation methodology in generalized coordinates. J. Comput. Phys., 148:322, 1999.MATHCrossRefADSGoogle Scholar
  42. H.-J. Kaltenbach, T. Gerz, and U. Schumann. Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280:1, 1994.MATHCrossRefADSGoogle Scholar
  43. L.H. Kantha and C.A. Clayson. Small scale processes in geophysical fluid flows. Academic Press, 2000.Google Scholar
  44. J. Kim and P. Moin. Application of a fractional step to incompressible navier-stokes equations. J. Comp. Phys., 59:308, 1985.MATHCrossRefADSMathSciNetGoogle Scholar
  45. J. Kim, P. Moin, and R.D. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177:133, 1987.MATHCrossRefADSGoogle Scholar
  46. Y. Kimura and J.R. Herring. Diffusion in stbly stratified turbulence. J. Fluid Mech., 328:253, 1996.MATHCrossRefADSGoogle Scholar
  47. A.N. Kolmogorov. Energy dissipation in locally isotropic turbulence (in russian). Dokl. Akad. Nauk. SSSR, 32:19–21, 1941a.Google Scholar
  48. A.N. Kolmogorov. Local structure of turbulence in an incompressible fluid at very high reynolds numbers (in russian). Dokl. Akad. Nauk. SSSR, 30:299–303, 1941b.ADSGoogle Scholar
  49. S. Komori, H. Ueda, F. Ogino, and T. Mizushina. Turbulent structure in a stably stratified open-channel flow. J. Fluid Mech., 130:13, 1983.CrossRefADSGoogle Scholar
  50. A.G. Kravchenko, P. Moin, and R. Moser. Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys., 127:412, 1996.MATHCrossRefADSGoogle Scholar
  51. B.E. Launder. On the effects of a gravitational field on the turbulence transport of heat and momentum. J. Fluid Mech., 67:569, 1975.CrossRefADSGoogle Scholar
  52. S. Legg. Internal tides generated on a corrugated continental slope, part 1: Cross-slope barotropic forcing. J. Phys Oceanogr., 34:156, 2004a.CrossRefMathSciNetADSGoogle Scholar
  53. S. Legg. Internal tides generated on a corrugated continental slope, part 2: Along-slope barotropic forcing. J. Phys Oceanogr., in press, 2004b.Google Scholar
  54. S. Legg and A.J. Adcroft. Internal wave breaking on concave and convex continental slopes. J. Phys Oceanogr., 33:2224, 2004.CrossRefMathSciNetADSGoogle Scholar
  55. D.K. Lilly. The representation of small scale turbulence in numerical simulation experiments. In IBM Sci. Comput. Symposium Environ. Sci.,, page 195. IBM Form 320–195, 1967.Google Scholar
  56. D.K. Lilly. A proposed modification of the germano sub-grid scale closure method. Phys. Fluids A, 4:633, 1992.CrossRefADSGoogle Scholar
  57. S.G. Llewellyn-Smith and W.R. Young. Conversion of the barotropic tide. J. Phys. Oceanogr., 32:1554, 2002.CrossRefMathSciNetADSGoogle Scholar
  58. S.G. Llewellyn-Smith and W.R. Young. Tidal conversion at a very steep ridge. J. Fluid Mech., 495:175, 2003.MATHCrossRefADSMathSciNetGoogle Scholar
  59. P.J. Mason and A.R. Brown. The sensitivity of large-eddy simulations of turbulent shear-flow to subgrid models. Boundary-Layer Meteor., 70:133, 1994.CrossRefADSGoogle Scholar
  60. P.J. Mason and S.H. Derbyshire. Large-eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Meteor., 53:117, 1990.CrossRefADSGoogle Scholar
  61. P.J. Mason and D.J. Thomson. Stochastic backscatter in large-eddy simulations of boundary-layers. J. Fluid Mech., 242:51, 1992.MATHCrossRefADSGoogle Scholar
  62. C. Meneveau, T.S. Lund, and W.H. Cabot. A lagrangian dynamic sub-grid scale model of turbulence. J. Fluid Mech., 319:353, 1996.MATHCrossRefADSGoogle Scholar
  63. F.J. Millero and A. Poisson. International one-athmosphere equation of state of seawater. Deep Sea Research, 27A:255–264, 1981.Google Scholar
  64. D.V. Mironov, V.M. Gryanik, C.H. Moeng, D.J. Olbers, and T.H. Warncke. Vertical turbulence structure and second-moment budgets in convection with rotation: A large-eddy simulation study. Q J Roy. Meteor. Soc, 126:477, 2000.CrossRefADSGoogle Scholar
  65. R. Mittal and P. Moin. Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J., 35:1415, 1997.MATHCrossRefADSGoogle Scholar
  66. C.H. Moeng. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41:2052, 1984.CrossRefADSGoogle Scholar
  67. C.H. Moeng and P.P. Sullivan. A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51:999, 1994.CrossRefADSGoogle Scholar
  68. P. Moin and K. Mahesh. Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech., 30:539, 1998.CrossRefADSMathSciNetGoogle Scholar
  69. A.S. Monin and A.M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, MA, 1971.Google Scholar
  70. F.T.M. Nieuwstadt. The turbulent structure of the stable, nocturnl boundary layer. J. Atmos. Sci., 41:2202, 1986.CrossRefADSGoogle Scholar
  71. F.T.M. Nieuwstadt and R.A. Brost. The decay of convective turbulence. J. Atmos. Sci., 43:532, 1986.CrossRefADSGoogle Scholar
  72. F.T.M. Nieuwstadt, P.J. Mason, C.H. Moeng, and U. Schumann. Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In Turbulent shear flows 8, page 313. Springer-Verlag, Berlin, 1990.Google Scholar
  73. A.M. Obukhov. The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR. Ser Geogr. Geophys., 13:58, 1949.Google Scholar
  74. I. Orlansky. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys., 21:251, 1976.CrossRefADSGoogle Scholar
  75. F. Petrelis, S.G. Llewellyn-Smith, and W.R. Young. Tidal conversion at a submarine ridge. J. Phys. Oceanogr, submitted, 2004.Google Scholar
  76. O.M. Phillips. On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res., 17:435, 1970.Google Scholar
  77. U. Piomelli. High reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A, 5:1484, 1993.CrossRefADSGoogle Scholar
  78. U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Ann. Rev. Fluid Mech., 34:349, 2002.CrossRefADSMathSciNetGoogle Scholar
  79. U. Piomelli and J.R. Chasnov. Large-eddy simulations: theory and applications. In Transition and turbulence modelling, page 269. edited by D. Henningson, M. Hallbäck, H. Alfreddson and A. Johansson, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  80. M.M. Rai and P. Moin. Direct simulations of turbulent-flow using finite-difference schemes. J. Comp. Phys., 96:15, 1991.MATHCrossRefADSGoogle Scholar
  81. W.C. Reynolds. In in Whither Turbulence? Turbulence at the Crossroads, page 313. Springer-Verlag, Heidelberg, 1990.CrossRefGoogle Scholar
  82. S.G. Saddoughi and S.V. Veeravalli. Local isotropy in turbulent boundary layers at high reynolds number. J. Fluid Mech., 268:333, 1994.CrossRefADSGoogle Scholar
  83. A.M. Saiki, C.H. Moeng, and P.S. Sullivan. Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol., 95:1, 2000.CrossRefADSGoogle Scholar
  84. S. Salon. Turbulent mixing in the gulf of trieste under critical conditions. Ph.D thesis, Dipartimento di Ingegneria Civile, Universitá di Trieste, 2004.Google Scholar
  85. H. Schmidt and U. Schumann. Coherent structure of the convective boundary layer derived from large-eddy simulation. J. Fluid Mech., 200:511, 1989.MATHCrossRefADSGoogle Scholar
  86. D.N. Slinn and J.J. Riley. A model for the simulation of turbulent boundary layers in an incompressible stratified flow. J. Comput. Phys., 144:550, 1998.MATHCrossRefMathSciNetADSGoogle Scholar
  87. J.S. Smagorinsky. General circulation experiments with primitive equations.i. the basic experiment. Mon. Weather Rev., 91:99, 1963.ADSCrossRefGoogle Scholar
  88. W.D. Smyth and J.N. Mourn. Lenght-scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12:1327, 2000.CrossRefADSMATHGoogle Scholar
  89. P.R. Spalart and J.H. Wattmuff. Experimental and numerical study of a turbulent boundary-layer with a pressure gradient. J. Fluid Mech., 249:337, 1993.CrossRefADSGoogle Scholar
  90. K.D. Squires. Detached-eddy simulation: current status and perspectives. In Direct and Large-Eddy simulation V, page 465. R. Friedrich, B.J. Geurts and O. Metais editors, Kluwer Academic Publishers, 2003.Google Scholar
  91. K.R. Sreenivasan. The passive scalar spectrum and the obukhov-corsin constant. Phys. Fluids, 8:189–196, 1996.MATHCrossRefADSMathSciNetGoogle Scholar
  92. C. Staquet. Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments. Fluid. Dyn. Res., 27:367, 2000.CrossRefADSGoogle Scholar
  93. P.P. Sullivan and J.C. McWilliams. Turbulent flow over water waves in the presence of stratification. Phys. Fluids, 14:1182, 2002.CrossRefADSMathSciNetMATHGoogle Scholar
  94. P.P. Sullivan, J.C. McWilliams, and C.H. Moeng. A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol, 71: 247, 1994.CrossRefADSGoogle Scholar
  95. P.P. Sullivan, J.C. McWilliams, and C.H. Moeng. A grid-nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol., 80: 167, 1996.CrossRefADSGoogle Scholar
  96. J. Taylor, S. Sarkar, and V. Armenio. Large eddy simulation of stably stratified open channel flow, submitted, 2004a.Google Scholar
  97. J. Taylor, S. Sarkar, and V. Armenio. work in progress for les simulation of reflection of internal waves over a topography. 2004b.Google Scholar
  98. H. Tennekes and J.L. Lumley. A First Course in Turbulence. The MIT Press, Cambridge, MA, 1972.Google Scholar
  99. J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerical grid generation. North-Holland, 1985.Google Scholar
  100. C.A.G. Webster. An experimental study of turbulence in a density stratified shear flow. J. Fluid Mech., 19:221, 1964.MATHCrossRefADSGoogle Scholar
  101. C. Wunsch. Internal tides in the ocean. Rev. Geophys., 13:167, 1975.ADSCrossRefGoogle Scholar
  102. Y. Zang and R.L. Street. Numerical simulation of coastal upwelling and interfacial instability of a rotating and stratified fluid. J. Fluid Mech., 305:47, 1995.MATHCrossRefADSGoogle Scholar
  103. Y. Zang, R.L. Street, and J. Koseff. A non-staggered grid, fractional step method for the time-dependent incompressible navier-stokes equations in curvilinear coordinates. J. Comp. Phys., 114:18, 1994.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Vincenzo Armenio
    • 1
  1. 1.Dipartimento di Ingegneria CivileUniversitá di TriesteTriesteItaly

Personalised recommendations