Theory of Nonlinear Surface Waves and Solitons

  • Gérard A. Maugin
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 481)


In this contribution we explore the possibilities of existence of various types of nonlinear surface waves that may propagate in a half-space of elastic materials. Nonlinearities may be of physical and geometrical origins. Various types of surface waves and exemplary nonlinear wave equations are first presented. Then basic equations of nonlinear elasticity theory are introduced and the standard linear surface-wave problems are recalled, in particular the one governing Rayleigh waves. Then two large classes of problems are examined in the presence of nonlinearities, whether there exists no dispersion or in the presence of dispersion. In the first case, various methods leaning on asymptotics are presented; these are the so-called iterative, projection, and Hamiltonian methods. This allows one to describe the evolution of nonlinear waves as they propagate, as also some exceptional cases of waves of permanent form. In the second case compensation between nonlinearity and dispersion may favor the existence of surface solitary waves of various types including surface SH envelope solitons guided by a thin film glued on the nonlinear substrate, as also solitary Rayleigh waves, with an emphasis on nonlocal effects. Generalizations including propagation along plates are given in the conclusion.


Surface Wave Solitary Wave Nonlinear Wave Rayleigh Wave Surface Acoustic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, J.D. (1973). Wave Propagation in Elastic Solids. Amsterdam: North-Holland.MATHGoogle Scholar
  2. Bataille, K., and Lund F. (1982). Nonlinear Waves in Elastic Media. Physica 6D: 95–104.MathSciNetGoogle Scholar
  3. Bland, D.R. (1969). Nonlinear Dynamical Elasticity. Waltham, Mass: Blaisdell.Google Scholar
  4. Cabannes, H. (1970). Fluiddynamics and Magnetohydrodynamics. New York: Wiley-Interscience.Google Scholar
  5. Cho, Y., and Miyagawa N. (1993). Surface Acoustic Wave Solitons Propagating on the Metallic Grating Waveguide. Appl. Phys. Lett. 63:1188–1190.CrossRefGoogle Scholar
  6. Collet, B., and Pouget J. (1996). Nonlinear Propagation of Wave Packets on an Elastic Substrate Coated with a Thin Film. In Markov, K.. Ed., Continuum Models and Discrete Systems, Singapore: World Scientific Publ. 395–403..Google Scholar
  7. Collet, B., and Pouget J. (1998). Two-dimensional Modulation and Instabilities of Flexural Waves of a Thin Plate on Nonlinear Elastic Foundation. Wave Motion 27: 521–534.CrossRefGoogle Scholar
  8. Collet, B., and Pouget J. (2001). Nonlinear Modulation of Wave Packets in a Shallow-Shell on An Elastic Foundation. Wave Motion 34: 63–81.MATHCrossRefMathSciNetGoogle Scholar
  9. Courant, R., and Friedrichs K.O. (1948). Supersonic Flows and Shock Waves. New York: J.Wiley.Google Scholar
  10. Dieulessaint, E., and Royer D. (1980). Elastic Waves in Solids (Translation from the French), Chichester, U.K: J.Wiley.Google Scholar
  11. Eckl, C, Kovalev, A.S., Mayer, A.P., Lomonosov, A.M., and Hess P. (2004), Solitary Surface Acoustic Waves. Physical Review E (in press)Google Scholar
  12. Eckl, C, Mayer, A.P., and Kovalev A.S. (2002). Phys. Rev. Lett. 89: 095501.CrossRefGoogle Scholar
  13. Eckl, C, Schöllmann, J., Mayer, A.P., Kovalev, A.S., and Maugin G.A. (2001), On the Stability of Surface Acoustic Pulse Trains in Coated Elastic Medbia. Wave Motion 34: 35–49.MATHCrossRefMathSciNetGoogle Scholar
  14. Engelbrecht, J. (1983). Nonlinear Wave Processes of Deformation in Solids. London: Pitman.MATHGoogle Scholar
  15. Engelbrecht, J., and Peipman, P. (1992). Nonlinear Waves in a Layer with Energy Influx. Wave Motion, 16: 173–181.CrossRefGoogle Scholar
  16. Ewen, J., Gunshor, R.L., and Weston, V.H. (1981). Solitons in Surface Acoustic Waves Media. In: Proc. 1981 Ultrasonics Symposium. New York: I. E. E. E 295–298.Google Scholar
  17. Ewen, J., Gunshor, R.L., and Weston, V.H. (1982). An Analysis of Solitons in Surface Acoustic Wave Devices. J. Appl. Phys. 53: 5682.CrossRefGoogle Scholar
  18. Fu, Y.B., and Hill, S.L.B. (2001). Propagation of Steady Nonlinear Waves in a Coated Elastic Half-space. Wave Motion 34: 109–29.MATHCrossRefMathSciNetGoogle Scholar
  19. Goldstein, R.V., and Maugin, G.A. Eds. (2004). Surface Waves in Anisotropic and Laminated Bodies and Defects Detection (NATO ARW, Moscow, 2002), NATO Science Series, Dordrecht: Kluwer.Google Scholar
  20. Gorentsveig, V.I., Kivshar, Yu.S, Kosevich, A.M., and Syrkin, E.S. (1990). Nonlinear Surface Modes in Crystals. Phys. Lett. 144: 479–486.CrossRefGoogle Scholar
  21. Gorentsveig, V.I., Kivshar, Yu.S, Kosevich, A.M. and Syrkin, E.S., (1991). Nonlinear Surface Modes in Crystals. Int. J. Engng. Sci. 29: 271–279.MATHCrossRefGoogle Scholar
  22. Graham, R.A., (1993). Solids under High Pressure Shock Compression. Berlin: Springer.Google Scholar
  23. Gusev, V., Lauriks, W. and Thoen, J. (1997). Theory for the Time Evolution of the Nonlinear Rayleigh Waves in an isotropic Solid. Phys. Rev. B55: 9344–9347.Google Scholar
  24. Hadouaj, H. and Maugin, G.A. (1989). Une onde solitaire se propageant sur un substrat élastique recouvert d’un film mince. C. R. Acad. Sci. Paris 11–309: 1877–1881.MathSciNetGoogle Scholar
  25. Hadouaj, H. and Maugin, G.A. (1992). Surface Solitons on Elastic Structures: numerics. Wave Motion, 16: 115–125.MATHCrossRefMathSciNetGoogle Scholar
  26. Hadouaj, H., Malomed, B.A. and Maugin, G.A. (1991a). Dynamics of a Soliton in the Generalized Zakharov System. Phys. Rev. A44: 3925–3931.MathSciNetGoogle Scholar
  27. Hadouaj, H., Malomed, B.A. and Maugin G.A. (1991b)., Soliton-soliton Collisions in the Generalized Zakharov System. Phys. Rev. A44: 3932–3940.MathSciNetGoogle Scholar
  28. Hamilton, M.F., Il’inskii, Y.A., and Zabolotskaya, E.A. (1995a). Local and Nonlocal Nonlinearity in Rayleigh Waves. J. Acoust. Soc. Amer. 97: 882–890.CrossRefGoogle Scholar
  29. Hamilton, M.F., Il’inskii, Y.A., and Zabolotskaya, E.A. (1995b). Evolution Equation for Nonlinear Rayleigh Waves. J. Acoust. Soc. Amer. 97: 891–897.CrossRefGoogle Scholar
  30. Hamilton, M.F., Il’inskii, Y.A., and Zabolotskaya, E.A. (1999). Nonlinear Surface Acoustic Waves in Crystals. J. Acoust. Soc. Amer. 105: 639–651.CrossRefGoogle Scholar
  31. Harvey, A.P., and Tupholme, G.E. (1991). Nonlinear Mode Coupling of Two co-directional Surface Acoustic Waves on a Piezoelectric Solid. Int. J. Engng. Sci. 29: 987–998.MATHCrossRefGoogle Scholar
  32. Harvey, A.P., and Tupholme, G.E. (1992). Propagation of Anisotropic Elastic and Piezoelectric Nonlinear Surface waves. Wave Motion 16:125–136.MATHCrossRefMathSciNetGoogle Scholar
  33. Hunter, J.K. (1989). Nonlinear Surface Waves. In: Lindquist, W.B., Current Progress in Hyperbolic Problems and Computations. Providence: New York. American Mathematical Society. 185–202Google Scholar
  34. Kalyanasundaram, N. (1981a). Nonlinear Surface Acoustic Waves on an Isotropic Solid. Int. J. Engng. Sci., 19: 279–286.MATHCrossRefGoogle Scholar
  35. Kalyanasundaram, N., (1981b). Finite-amplitude Love Waves on an Isotropic Layered Half Space. Int. J. Engng. Sci. 19:287–293.MATHCrossRefGoogle Scholar
  36. Kalyanasundaram, N. (1984). Nonlinear Propagation Characteristics of Bleustein-Gulayev Waves. J. Sound Vibr. 96:411–420.MATHCrossRefMathSciNetGoogle Scholar
  37. Kalyanasundaram, N., Parker, D.F., and David E.A. (1990). The Spreading of Nonlinear Elastic Surface Waves. J. Elasticity 24: 79–103.MATHCrossRefGoogle Scholar
  38. Kalyanasundaram, N., Randam, R., and Prasad, T. (1982). Coupled Amplitude Theory of Nonlinear Surface Acoustic Waves. J. Acoust. Soc. Amer. 72: 488–492.MATHCrossRefGoogle Scholar
  39. Kivshar, Yu.S. (1991). Solitons in a Nonlinear Elastic Medium. Phys. Rev. B43: 3493–3499.Google Scholar
  40. Knight, E.Yu., Hamilton, M.F., Il’inskii, Y.A., and Zabolotskaya, E.A. (1997). General Theory for the Spectral Evolution of Nonlinear Rayleigh Waves. J. Acoust. Soc. Amer. 102: 1402–1417.CrossRefGoogle Scholar
  41. Kosevich, Yu.A. (1991). Nonlinear Shear Surface Wave at the Interfaces and Planar defects of Crystals. Int. J. Engng. Sci. 29: 327–330.MATHCrossRefGoogle Scholar
  42. Kovalev, A.S., Mayer, A.P., Eckl, C. and Maugin, G.A., (2002), Solitary Rayleigh Waves in the Presence of Surface Nonlinearities. Phys. Rev. E66:036615/1-15Google Scholar
  43. Kulikowsky, A., and Sveshnikova, L.M. (1995). Nonlinear Waves in Elastic Media. Boca-Raton, Florida: C.R.C. Press.Google Scholar
  44. Jeffrey, A., and Engelbrecht, J., Eds. (1994). Nonlinear Waves in Solids (CISM Lecture Notes, 1993). Wien: Springer.MATHGoogle Scholar
  45. Jeffrey, A., and Taniuti T. (1963). Nonlinear Wave Propagation with Applications to Physics and Magnetohydrodynamics. New York: Academic Press.Google Scholar
  46. Lardner, R.W. (1983). Nonlinear Surface Waves on an Elastic Solid. Int. J. Engng. Sci. 21: 1331–1342.MATHCrossRefMathSciNetGoogle Scholar
  47. Lardner, R.W. (1985). Waveform Distorsion and Shock Development in Nonlinear Rayleigh Waves. IntJ. Engng. Sci. 23: 113–118.CrossRefGoogle Scholar
  48. Lomonosov, A.M., Mayer, A.P. and Hess, P. (2001). In: Levy, M., Bass, H.E., and Stren, E. Eds. Experimental Methods in the Physical Sciences. San Diego: Academic Press. Vol.3, 65.Google Scholar
  49. Maradudin, A.A. (1988). Nonlinear Surface Acoustic Waves and Their Associated Solitons. In: Parker, D.F, and Maugin, G.A., Eds. (1988), pp.62–71.Google Scholar
  50. Maradudin, A.A., and Mayer A.P. (1991). Surface Acoustic Waves on Nonlinear Susbtrates. In: Boardman, A., Bertolotti, M., and Twardowski, T., Eds. Nonlinear Waves in Solid State Physics. New York: Plenum. 13–161.Google Scholar
  51. Mandel, J., and Brun, L., Eds. (1975). Mechanical Waves in Solids (CISM Lecture Notes). Wien: Springer.MATHGoogle Scholar
  52. Maugin, G.A. (1983). Surface Elastic Waves with Transverse Horizontal Polarization. In: Hutchinson, J.W., Ed. Advances in Applied Mechanics. New York: Academic Press. Vol.3, 373–434..Google Scholar
  53. Maugin, G.A. (1985)., Nonlinear Electromechanical Effects, A series of Lectures. Singapore: World Scientific.Google Scholar
  54. Maugin, G.A. (1988). Shear Horizontal Surface Acoustic Waves in Solids. In: Parker, D.F, and Maugin, G.A., Eds. (1988), pp.258–27.Google Scholar
  55. Maugin, G.A. (1994). Physical and Mathematical Models of Nonlinear Waves. in: Jeffrey, A., and Engelbrecht, J. Eds (1994), pp. 109–233.Google Scholar
  56. Maugin, G.A. (1999). Nonlinear Waves in Elastic Crystals. Oxford, U.K.: Oxford University Press.MATHGoogle Scholar
  57. Maugin, G.A., and Hadouaj, H. (1991). Solitary Surface Waves on an Elastic Substrate Coated with a Thin Film. Phys. Rev. B44: 1266–1280.Google Scholar
  58. Maugin, G.A., Hadouaj, H., and Malomed, B.A. (1992). Nonlinear Coupling Between SH Surface Solitons and Rayleigh Modes on Elastic Structures. Phys. Rev. B45: 9688–9694.Google Scholar
  59. Maugin, G.A., Pouget, J., Drouot, R. and Collet, B. (1992). Nonlinear Electromechanical Couplings. New York: J.Wiley.Google Scholar
  60. Mayer, A.P. (1995). Surface Acoustic Waves in Nonlinear Elastic Media. Physics Reports 256: 237–366.CrossRefGoogle Scholar
  61. Mayer, A.P., and Kovalev, A.S. (2003). Nonlinear Waves Guided a Liquid-solid Interface, Proc. Estonian Acad. Sci. Math. Phys. 52: 43–48.MATHMathSciNetGoogle Scholar
  62. Mayer, A.P., and Maradudin, A.A. (1991). Effects of Nonlinearity and Dispersion on the Propagation of Surface Acoustic Waves. In: Maugin, G.A. Ed. Continuum Models and Discrete Systems, London: Longman. Vol.2, 306–315.Google Scholar
  63. Meegan, G.F., Hamilton, M.F., Il’inskii, Y.A., and Zabolotskaya, E.A. (1999). Nonlinear Rayleigh and Scholte Waves. J. Acoust. Soc. Amer. 106: 1712–1723.CrossRefGoogle Scholar
  64. Mozhaev, V.G. (1989). A New Type of Acoustic Waves in Solids Due to Nonlinearity. Phys. Lett. A139: 333–337.Google Scholar
  65. Murdoch, A.I. (1976). The Propagation of Surface Waves in bodies with Material Boundaries, J. Mech. Phys. Solids 24: 137–146.MATHCrossRefGoogle Scholar
  66. Murnaghan, F.D. (1951). Finite Deformations of an Elastic Solids. New York: J.Wiley.Google Scholar
  67. Nayanov, V.I. (1986). Surface Acoustic Cnoïdal Waves and Solitons in a LiNbO3-(SiO film)., JETP Lett. 44: 314–317.Google Scholar
  68. Newell, A.C. (1985). Solitons in Mathematics and Physics. Philadelphia: S.I.A.M.Google Scholar
  69. Panayotaros, P. (2002). An Expansion Method for Nonlinear Rayleigh Waves., Wave Motion 36: 1–21.MATHCrossRefMathSciNetGoogle Scholar
  70. Parker, D.F. (1988). Wave Form Evolution for Nonlinear Surface Acoustic Waves, Int. J. Engng. Sci. 26: 59–75.MATHCrossRefGoogle Scholar
  71. Parker D.F. (1990). In: Boardman, A.D., Twardowski, T., and Bertolotti, M. Eds. Nonlinear Waves in Solid State Physics. New York: Plenum. 163–183Google Scholar
  72. Parker, D.F. (1994). Nonlinear Surface Acoustic Waves and Waves on Stratified media. In: Jeffrey, A., and Engelbrecht, J. Eds (1994), pp.289–347.Google Scholar
  73. Parker, D.F. (2004). Nonlinearity in Elastic Surfaces Waves acts nonlocally. In: Goldstein, R.V., and Maugin, G.A. Eds (2004). Dordrecht: Kluwer (in press).Google Scholar
  74. Parker, D.F., and David, E.A. (1989a). Nonlinear Piezoelectric Surface Waves. Int. J. Engng. Sci. 27: 565–581.MATHCrossRefGoogle Scholar
  75. Parker, D.F., and David, E.A. (1989b). Spreading of Nonlinear Surface Waves on Piezoelectric Solids. In: McCarthy, M.F., and Hayes, M.A., Eds. Elastic Wave Propagation. Amsterdam: Elsevier. 125–131.Google Scholar
  76. Parker, D.F., Mayer, A.P., and Maradudin, A.A. (1992). The Projection Method for Nonlinear Surface Acoustic Waves. Wave Motion 16: 151–162.MATHCrossRefMathSciNetGoogle Scholar
  77. Parker, D.F., and Maugin G.A. Eds (1988). Recent Developments in Surface Acoustic Waves. Berlin: Springer.MATHGoogle Scholar
  78. Parker, D.F., and Talbot, F.M. (1985). Analysis and Computation for Nonlinear Elastic Surface Waves of Permanent Form. J. Elasticity 15:389–426.MATHCrossRefMathSciNetGoogle Scholar
  79. Planat, M. (1985). Multiple-scale Analysis of the Nonlinear Acoustic Wave Propagation in Anisotropic Crystals. J. Appl. Phys. 57: 4911–4925.CrossRefGoogle Scholar
  80. Planat, M. (1991). Observation of Acoustic Envelope Solitary Waves Generated by Metallic Interdigitated Transducers in a Quartz Crystal. In: Maugin, G.A. Ed., Continuum Models and discrete Systems. London: Longman. Vol.2, 339–349.Google Scholar
  81. Porubov, A.V., and Samsonov A.M. (1995). Long Nonlinear Strain Waves in Layered Elastic Half-space. Int. J. Non-linear Mech. 30: 861–877.MATHCrossRefGoogle Scholar
  82. Rakhmatulin, Kh.A., and Demianov Y. (1961). Resistance to Intense Loads of Short Duration (in Russian). Moscow: Fizmatgiz.Google Scholar
  83. Reutov, V.P. (1973). Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 16: 1690 [English translation: Radiophys. Quant. Electron. 16: 1307]Google Scholar
  84. Sakuma, T., and Nishigushi N. (1990). Theory of the Surface Acoustic Soliton, V. Approximate Soliton Solutions of the Korteweg-de Vries Type. Phys. Rev. B41: 12117–12125.Google Scholar
  85. Teymur, M. (1988). Nonlinear Modulation of Love Waves on an Isotropic Hyperelastic Layered Half-space. Int. J. Engng.Sci. 26: 907–927.MATHCrossRefMathSciNetGoogle Scholar
  86. Tiersten, H.F. (1969). Elastic Surface Waves Guided by Thin Film. J. Appl. Phys. 40: 770–789.CrossRefGoogle Scholar
  87. Tupholme, G.E., and Harvey, A.P. (1988). Nonlinear Surface Acoustic Waves on a Piezolecetric Solid. Int. J. Engng. Sci. 26: 1161–1166.MATHCrossRefGoogle Scholar
  88. Zabolotskaya, E.A. (1992). Nonlinear Propagation of Plane and Circular Rayleigh Waves in Isotropic Solids. J. Acoust. Soc. Amer. 91:2569–2575.CrossRefGoogle Scholar
  89. Vlannes, N.P. and Bers, A. (1982). Nonlinear Coupled-Mode Theory for Surface Acoustic Waves. J. Appl. Physics 53: 372–378.CrossRefGoogle Scholar
  90. Whitham, G.B. (1974). Linear and Nonlinear Waves. New York: J. Wiley-Interscience.MATHGoogle Scholar
  91. Wright, T.W., Ed. (1986). Nonlinear Wave Propagation in Solids, Vol. AMD-77. New York: Society of Mechanical Engineers.Google Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Gérard A. Maugin
    • 1
  1. 1.Laboratoire de Modélisation en Mécanique, UMR CNRSUniversité Pierre et Marie CurieParisFrance

Personalised recommendations