Advertisement

Surface Wave Testing for Geotechnical Characterization

  • Sebastiano Foti
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 481)

Abstract

This chapter focuses on execution and interpretation of surface wave tests for soil characterization. The different steps (acquisition, processing and inversion) will be considered specifying standard procedures and possible alternatives. Limitations and pitfalls will be also considered, showing with experimental examples the difference between theory and practice in surface wave testing.

Keywords

Surface Wave Dispersion Curve Rayleigh Wave Joint Inversion Seismic Refraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., Richards P.G. (1980). Quantitative seismology: theory and methods-2 vol. Freeman. S. FranciscoGoogle Scholar
  2. Beaty K.S., Schmitt D.R., Sacchi M. (2002). Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophys. J. Internat., 151, 622–631CrossRefGoogle Scholar
  3. Ben-Menhaem A. (1995). A concise history of mainstream seismology: Origins, legacy and perspectives. Bull. Seism. Soc. of A., 85(4). 1202–1225Google Scholar
  4. Comina C., Foti S., Sambuelli L., Socco L.V., Strobbia C. (2002) Joint inversion of VES and surface wave data. Proc. of SAGEEP 2002, Las Vegas, USA, February 10–14, CD-RomGoogle Scholar
  5. Doyle H. (1995). Seismology. J. Wiley & sons, ChichesterGoogle Scholar
  6. Dziewonki A.M., Hales A.L. (1972). Numerical Analysis of Dispersed Seismic Waves. In Methods in Computational Physics vol.11 Seismology: Surface waves and Earth Oscillations. B.A. Bolt Ed. Academic Press. New York: 39–85Google Scholar
  7. Foti S. (2000). Multistation Methods for Geotechnical Characterization using Surface Waves. PhD dissertation, Politecnico di Torino, ItalyGoogle Scholar
  8. Foti S. (2003). Small Strain Stiffness and Damping Ratio of Pisa Clay from Surface Wave Tests. Geotechnique, 53(5): 455–461CrossRefGoogle Scholar
  9. Foti S., Butcher A.P. (2004) General Report: Geophysical methods applied to geotechnical engineering, Proc. ISC-2 on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.), Millpress, Rotterdam, 409–418Google Scholar
  10. Foti S., Fahey M. (2003) Applications of multistation surface wave testing, Deformation Characteristics of Geomaterials, Di Benedetto H., Doanh T., Geoffroy H. & Sauzéat C. Eds, vol.1, Balkema, Rotterdam, 13–20Google Scholar
  11. Foti S., Sambuelli L., Socco L.V., Strobbia C. (2002). Spatial sampling issues in fk analysis of surface waves. Proc. of SAGEEP 2002. Las Vegas. USA. February 10–14. CD-RomGoogle Scholar
  12. Foti S., Sambuelli L., Socco L.V., Strobbia C. (2003) Experiments of joint acquisition of seismic refraction and surface wave data, Near Surface Geophysics, EAGE, 119–129Google Scholar
  13. Foti S., Strobbia C. (2002) Some notes on model parameters for surface wave data inversion, Proc. of SAGEEP 2002, Las Vegas, USA, February 10–14, CD-RomGoogle Scholar
  14. Gabriels P., Snieder R., Nolet G. (1987). In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves. Geophys. Prospect. 35: 187–196CrossRefGoogle Scholar
  15. Hayashi K., Hikima K. (2003). CMP analysis of multi-channel surface wave data and its application to near-surface S-wave velocity delineation. Proc. of SAGEEP2003. San Antonio. USA. April 6–10. CD-RomGoogle Scholar
  16. Hayashi K., Okada A., Matsuoka T., Hatakeyama H. (2004). Joint Analysis of a surface-wave method and a Micro-Gravity survey. Proc. of SAGEEP 2004, Colorado Springs, USA, CD-RomGoogle Scholar
  17. Hering A., Misiek R., Gyulai A., Ormos T., Dobroka M., Dresen L. (1995). A joint inversion algorithm to process geoelectric and surface wave sismic data. Part I: basic ideas, Geophysical Prospecting, 43, 135–156.CrossRefGoogle Scholar
  18. Herrmann R.B. (1994). Computer programs in seismology. User’s Manual. S.Louis University, Missouri (USA)Google Scholar
  19. Horike M. (1985) Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. J. Phys. Earth, 33, 59–96Google Scholar
  20. Hunaidi O. (1998). Evolution-based genetic algorithms for analysis of non-destructive surface wave tests on pavements. NDT & E Int., 31, no.4, 273–280CrossRefGoogle Scholar
  21. Jones R.B. (1958). In-situ measurement of the dynamic properties of soil by vibration methods. Geotechnique, 8(1), 1–21CrossRefGoogle Scholar
  22. Lai C.G. (1998). Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. PhD Diss., Georgia Inst. of Techn., Atlanta (Georgia, USA)Google Scholar
  23. Lai C.G. (2005). Surface waves in dissipative media: forward and inverse modelling. In this CISM volume, Springer. WienGoogle Scholar
  24. Lai C.G., Foti S., Rix G.J. (2004). Propagation of data uncertainty in surface wave inversion. Submitted for publication to J. of Eng. and Envir. Geophysics. EEGSGoogle Scholar
  25. Lai C.G., Rix G.J., Foti S., Roma V. (2002). Simultaneous Measurement and Inversion of Surface Wave Dispersion and Attenuation Curves. Soil Dynamics and Earthquake Engineering, 22(9–12), 923–930CrossRefGoogle Scholar
  26. Louie J.N. (2001). Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull. Seismol. Soc. Amer., 91, n.2, 347–364.CrossRefGoogle Scholar
  27. Malagnini L., Herrmann R.B., Biella G., de Frando R. (1995). Rayleigh waves in quaternary alluvium from explosive sources: determination of shear-wave velocity and Q structure. Bull. of Seism. Soc. of A., 85, pp. 900–922Google Scholar
  28. McMechan G.A., Yedlin M.J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics. 46: 869–874CrossRefGoogle Scholar
  29. Menke, W. (1989). Geophysical data analysis: discrete inverse theory. Academic Press. San Diego. 260 pp.MATHGoogle Scholar
  30. Misiek R., Liebig A., Gyulai A., Ormos T., Dobroka M, Dresen L. (1997). A joint inversion algorithm to process geoelectric and surface wave sismic data. Part II: applications, Geophysical Prospecting, 45, 65–85CrossRefGoogle Scholar
  31. Nasseri-Moghaddam A., Cascante G., Phillips C, Hutchinson J. (2004). A new quantitative procedure to determine the location and embeddement depth of a void with surface waves. Proc. of SAGEEP 2004, Colorado Springs, USA, CD-RomGoogle Scholar
  32. Nazarian S. (1984). In situ determination of elastic moduli of soil deposits and pavement systems by Spectral-Analysis-of-Surface waves method, PhD Diss., Un. of Texas at AustinGoogle Scholar
  33. O’Neill A. (2004) Full waveform reflectivity for inversion of surface wave dispersion in shallow site investigations, Proc. ISC-2 on Geotechnical and Geophysical Site Characterization, Viana da Fonseca & Mayne (eds.), Millpress, Rotterdam, 547–554Google Scholar
  34. Okada H. (2003). The microtremor survey method. Geophysical monograph series, number 12, SEG, Tulsa, USAGoogle Scholar
  35. Park C.B., Miller R.D., Xia J. (1999). Multichannel analysis of surface waves. Geophysics 64: 800–808CrossRefGoogle Scholar
  36. Phillips C, Moghaddam A.N., Moore T., Cascante G., Hutchinson D.J. (2003). A simple automated method of SASW analysis using multiple receivers. Proc. of SAGEEP2003. San Antonio. USA. April 6–10. CD-RomGoogle Scholar
  37. Richart F.E. Jr, Wood R.D., Hall J.R. Jr (1970). Vibration of soils and foundations. Prentice-Hall, New JerseyGoogle Scholar
  38. Rix G.J. (2005). Surface wave testing for near surface site characterization. In this CISM volume, Springer. WienGoogle Scholar
  39. Rix G.J., Lai C.G., Foti S. (2001). Simultaneous measurement of surface wave dispersion and attenuation curves. Geotechn. Testing J. ASTM: 350–358Google Scholar
  40. Rix, G.J. and Lai, C.G. (2000). Software tools for surface wave analysis. Available at the WEB site: http://www.ce.gatech.edu/~grix/surface_wave.html#Software.Google Scholar
  41. Ryden N., Ulriksen P., Park C., Miller R. (2002). Portable Seismic Acquisition System (PSAS) for pavement MASW. Proc. of SAGEEP 2002, Las Vegas, USA, February 10–14, CD-RomGoogle Scholar
  42. Sànchez-Salinero I. (1987). Analytical investigation of seismic methods used for engineering applications. PhD Diss. Un. of Texas at AustinGoogle Scholar
  43. Santamarina J.C., Fratta D. (1998). Introduction to discrete signals and inverse problems in civil engineering. Asce Press. RestonGoogle Scholar
  44. Stokoe K.H. II, Wright S.G., J.A. Bay, J.M. Roesset. (1994). Characterization of geotechnical sites by SASW method. Geophysical Characterization of Sites. R.D. Woods Ed.: 15–25Google Scholar
  45. Strobbia C. (2002). Surface Wave Methods: Acquisition, Processing and Inversion. PhD Diss. Politecnico di Torino. ItalyGoogle Scholar
  46. Strobbia C., Foti S. (2004) Multi-Offset Phase Analysis of Surface Wave Data (MOPA), submitted to J. Applied Geophysics Google Scholar
  47. Szelwis R., Behle A. (1987). Shallow shear-wave velocity estimation from multimodal Rayleigh waves, in Danbom, S. and Domenico, S. N., Ed., Shear-wave exploration: Soc. Expl. Geophys., pp.214–226Google Scholar
  48. Tokimatsu K. (1995) Geotechnical Site Characterisation using Surface Waves. Proc. IS Tokyo 1995, Balkema, 1333–1368Google Scholar
  49. Tselentis G-A., Delis G. (1998). Rapid assessment of S-wave profiles from the inversion of multichannel surface wave dispersion data. Annali di Geofisica. 41. 1–15Google Scholar
  50. Williams T.P., Gucunski N. (1995). Neural networks for backcalculation of moduli from SASW test, J. of Computing in Civil Eng., 9(1), ASCE, pp. 1–8CrossRefGoogle Scholar
  51. Xia J., Li P.H., Lewis M.J., Miller R.D., Park C.B. (2002). Using surface wave method to define a sinkhole impact area in a noisy environment. Proc. of SAGEEP2002. Las Vegas. USA. February 10–14. CD-RomGoogle Scholar
  52. Zwicki DJ. (1999). Advanced signal processing methods applied to engineering analysis of seismic surface waves. PhD dissertation, Georgia Institute of Technology, Atlanta, USAGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Sebastiano Foti
    • 1
  1. 1.Dept of Structural and Geotechnical Eng.Politecnico di TorinoTorinoItaly

Personalised recommendations