Advertisement

Adaptive Methods for Contact Problems

  • Peter Wriggers
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 416)

Abstract

This contribution is concerned with the adaptive finite-element-formulation of contact problems. For this, first the theoretical background of continuum mechanics and contact kinematics is given. Next the basic finite element formulation for large deformation contact processes is presented for two-dimensional problems. The development of the discretization of contact contributions follows. Here standard approaches are discussed for the case of frictional and frictionless contact. Finally different adaptive strategies involving as well residual based error estimators as error indicators based on superconvergence patch recovery are derived and formulated to include the contributions due to contact. Also error estimators based on dual principles are discussed. Examples show the performance of the different formulations and adaptive strategies.

Keywords

Contact Problem Error Estimator Posteriori Error Contact Interface Adaptive Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Alart. P. and Curnier. A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering. 92:353–375.MATHCrossRefMathSciNetGoogle Scholar
  2. Babuska. I. and Miller. A. (1987). A feedback finite element method with a posteriori error estimation: Part i. the finite element method and some basic properties of the a posteriori error estimation. Computer Methods in Applied Mechanics and Engineering, 61:1–40.MATHCrossRefMathSciNetGoogle Scholar
  3. Babuska, I. and Rheinboldt, W. (1978). Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis, 15:736–754.MATHCrossRefMathSciNetGoogle Scholar
  4. Babuska, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K. (1994). Validation of a posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37:1073–1123.MATHCrossRefMathSciNetGoogle Scholar
  5. Barthold, F. J. and Bischoff, D. (1988). Generalization of Newton type methods to contact problems with friction. Journal Mec. Theor. Appl, pages 97–110.Google Scholar
  6. Bathe, K. J. (1986). Finite-Elemente-Methoden, Matrizen und lineare Algebra. Die Meth-ode der finiten Elemente. L”osung von Gleichgewichtsbedingungen und Bewegungsgleichungen; Deutsche ”Ubersetzung von P. Zimmermann. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  7. Bathe, K. J. and Chaudhary, A. B. (1985). A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21:65–88.MATHCrossRefGoogle Scholar
  8. Becker, R. and Rannacher, R. (1996). A feed-back approach to error control in finite element methods: Basic analysis and examples. EAST-WEST J. Numerical Mathematics, 4:237–264.MATHMathSciNetGoogle Scholar
  9. Bertsekas, D. P. (1984). Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York.Google Scholar
  10. Björkman, G., Klarbring, A., Sjödin, B., Larsson, T., and Rönnqvist, M. (1995). Sequential quadratic programming for non-linear elastic contact problems. International Journal for Numerical Methods in Engineering, 38:137–165.MATHCrossRefGoogle Scholar
  11. Carstensen, C, Scherf, O., and Wriggers, P. (1999). Adaptive finite elements for elastic bodies in contact. SIAM Journal of Scientific Computing, 20:1605–1626.MATHCrossRefMathSciNetGoogle Scholar
  12. Ciarlet, P. G. (1988). Mathematical Elasticity I: Three-dimensional Elasticity. North-Holland, Amsterdam.MATHGoogle Scholar
  13. Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, volume 1. Wiley, Chichester.Google Scholar
  14. Curnier, A. and Alart, P. (1988). A generalized newton method for contact problems with friction. J. Mec. Theor. Appl, 7:67–82.MathSciNetGoogle Scholar
  15. Curnier, A., He, Q. C., and Telega, J. J. (1992). Formulation of unilateral contact between two elastic bodies undergoing finite deformation. C. R. Acad. Sci. Paris, 314:1–6.MATHGoogle Scholar
  16. Duvaut, G. and Lions, J. L. (1976). Inequalities in Mechanics and Physics. Springer Verlag, Berlin.MATHGoogle Scholar
  17. Francavilla, A. and Zienkiewicz, O. C. (1975). A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9:913–924.CrossRefGoogle Scholar
  18. Giannokopoulos, A. E. (1989). The return mapping method for the integration of friction constitutive relations. Computers and Structures, 32:157–168.CrossRefGoogle Scholar
  19. Glowinski, R. and Le Tallec, P. (1984). Finite element analysis in nonlinear incompressible elasticity. In Finite Element, Vol. V: Special Problems in Solid Mechanics. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  20. Hallquist, J. O., Goudreau, G. L., and Benson, D. J. (1985). Sliding interfaces with contact-impact in large-scale lagrange computations. Computer Methods in Applied Mechanics and Engineering, 51:107–137.MATHCrossRefMathSciNetGoogle Scholar
  21. Hallquist, J. O., Schweizerhof, K., and Stillman, D. (1992). Efficiency refinements of contact strategies and algorithms in explicit fe programming. In Owen, D. R. J., Hinton, E., and Onate, E., editors, Proceedings of COMF1 AS III, pages 359–384. Pineridge Press.Google Scholar
  22. Hansson, E. and Klarbring, A. (1990). Rigid contact modelled by CAD surface. Engineering Computations. 7:344–348.Google Scholar
  23. Heegaard, J.-H. and Curnier, A. (1993). An augmented Lagrange method for discrete large-slip contact problems. International Journal for Numerical Methods in Engineering, 36:569–593.MATHCrossRefMathSciNetGoogle Scholar
  24. Hlavacek, I., Haslinger, J., Necas, J., and Lovisek, J. (1988). Solution of Variational Inequalities in Mechanics. Springer-Verlag, Berlin, New York.MATHGoogle Scholar
  25. Hughes, T. R. J., Taylor, R. L., and Kanoknukulchai, W. (1977). A finite element method for large displacement contact and impact problems. In Bathe, K. J., editor, Formulations and Computational Algorithms in FE Analysis, pages 468–495, Boston. MIT Press.Google Scholar
  26. Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press.Google Scholar
  27. Johnson, C. (1991). Adaptive finite element methods for the obstacle problem. Technical report, Chalmers University of Technology, Göteborg.Google Scholar
  28. Johnson, C. and Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101:143–181.MATHCrossRefMathSciNetGoogle Scholar
  29. Ju, W. and Taylor, R. L. (1988). A perturbed lagrange formulation for the finite element solution of nonlinear frictional contact problems. Journal of Theoretical and Applied Mechanics, 7:1–14.Google Scholar
  30. Kikuchi, N. and Oden, J. T. (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia.MATHGoogle Scholar
  31. Klarbring, A. (1986). A mathematical programming approach to three-dimensional contact problems with friction. Computer Methods in Applied Mechanics and Engineering, 58:175–200.MATHCrossRefMathSciNetGoogle Scholar
  32. Laursen, T. A. and Simo, J. C. (1993). A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. International Journal for Numerical Methods in Engineering, 36:3451–3485.MATHCrossRefMathSciNetGoogle Scholar
  33. Lee, C. Y., Oden, J. T., and Ainsworth, M. (1991). Local a posteriori error estimates and numerical results for contact problems and problems of flow through porous media. In Wriggers, P. and Wagner, W., editors, Computational Methods in Nonlinear Mechanics, pages 671–689, Berlin. Springer.Google Scholar
  34. Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass., second edition.MATHGoogle Scholar
  35. Oden, J. T. (1981). Exterior penalty methods for contact problems in elasticity. In Wunderlich, W., Stein, E., and Bathe, K. J., editors, Nonlinear Finite Element Analysis in Structural Mechanics, Berlin. Springer.Google Scholar
  36. Ortiz, M. and Quigley, J. J. (1991). Adaptive mesh refinement in strain localization problems. Computer Methods in Applied Mechanics and Engineering, 90:781–804.CrossRefGoogle Scholar
  37. Papadopoulos, P. and Taylor, R. L. (1992). A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94:373–389.MATHCrossRefGoogle Scholar
  38. Parisch, H. (1989). A consistent tangent stiffness matrix for three-dimensional nonlinear contact analysis. International Journal for Numerical Methods in Engineering, 28:1803–1812.MATHCrossRefGoogle Scholar
  39. Ramm, E. and Cirak, F. (1997). Adaptivity for nonlinear thin-walled structures. In Owen, D. R. J., Hinton, E., and Onate, E., editors, Proceedings of COMPLAS 5, pages 145–163, Barcelona. CIMNE.Google Scholar
  40. Rannacher, R. and Suttmeier, F. T. (1997). A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Technical Report 97-16, Institut for Applied Mathematics, SFB 359, University of Heidelberg.Google Scholar
  41. Rheinboldt, W. (1985). Error estimates for nonlinear finite element computations. Computers and Structures, 20:91–98.MATHCrossRefMathSciNetGoogle Scholar
  42. Schöberl, J.. (1997). Netgen — an advancing front 2d/3d mesh generator based on abstract rules. Computer Visualization Science, 1:41–52.MATHCrossRefGoogle Scholar
  43. Simo, J. C. and Laursen. T. A. (1992). An augmented Lagrangian treatment of contact problems involving friction. Computers and Structures, 42:97–116.MATHCrossRefMathSciNetGoogle Scholar
  44. Simo. J. C. and Taylor. R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48:101–118.MATHGoogle Scholar
  45. Simo, J. C, Wriggers, P., and Taylor, R. L. (1985). A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering. 50:163–180.MATHCrossRefMathSciNetGoogle Scholar
  46. Sloan. S. W. (1987). A fast algorithm for constructing delaunay triangularization in the plane. Adv. Eng. Software, 9:34–55.MATHGoogle Scholar
  47. Stadter, J. T. and Weiss, R. O. (1979). Analysis of contact through finite element gaps. Computers and Structures, 10:867–873.MATHCrossRefGoogle Scholar
  48. Stein. E.. Seifert. B.. Ohnimus. S.. and Carstensen, C. (1994). Adaptive finite element analysis of geometrically nonlinear plates and shells, especially buckling. International Journal for Numerical Methods in Engineering, 37:2631–2655.MATHCrossRefMathSciNetGoogle Scholar
  49. Strang, G. and Fix, G. J. (1973). An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs.MATHGoogle Scholar
  50. Verfürth, R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Teubner, Chichester, New York, Stuttgart, Leipzig.MATHGoogle Scholar
  51. Wriggers. P. (1987). On consistent tangent matrices for frictional contact problems. In Pande. G. and Middleton. J., editors. Proceedings of NUMETA 87, Dordrecht. M. Nijhoff Publishers.Google Scholar
  52. Wriggers, P. (2001). Nichtlineare Finite Elemente. Springer, Berlin.Google Scholar
  53. Wriggers, P. and Imhof. M. (1993). On the treatment of nonlinear unilateral contact problems. Ing. Archiv, 63:116–129.MATHGoogle Scholar
  54. Wriggers, P. and Miehe, C. (1992). On the treatment of contact contraints within coupled thermomechanical analysis. In Besdo, D. and Stein, E., editors, Proc. of EUROMECH, Finite Inelastic Deformations, Berlin. Springer.Google Scholar
  55. Wriggers, P. and Miehe, C. (1994). Contact constraints within coupled thermomechanical analysis-a finite element model. Computer Methods in Applied Mechanics and Engineering, 113:301–319.MATHCrossRefMathSciNetGoogle Scholar
  56. Wriggers. P.. Rieger. A., and Scherf. O. (2000). Comparison of different error measures for adaptive finite element techniques applied to contact problems involving large elastic strains. Computer Methods in Applied Mechanics and Engineering.Google Scholar
  57. Wriggers. P. and Scherf. O. (1997). Adaptive methods for contact problems. In Gastecki, A., editor. Proceedings of PCCMM XIII, Poznan.Google Scholar
  58. Wriggers, P. and Scherf, O. (1998). Different a posteriori error estimators and indicators for contact problems. Mathematics and Computer Modelling, 28:437–447.MATHCrossRefMathSciNetGoogle Scholar
  59. Wriggers, P., Scherf, O., and Carstensen, C. (1994). Adaptive techniques for the contact of elastic bodies. In Hughes, J., Onate, E., and Zienkiewicz, O., editors, Recent Developments in Finite Element Analysis, pages 78–86, Barcelona. CIMNE.Google Scholar
  60. Wriggers, P. and Simo, J. (1985). A note on tangent stiffnesses for fully nonlinear contact problems. Communications in Applied Numerical Methods, 1:199–203.MATHCrossRefGoogle Scholar
  61. Wriggers, P., Simo, J., and Taylor, R. (1985). Penalty and augmented lagrangian formulations for contact problems. In Middleton, J. and Pande, G., editors, Proceedings of NUMETA Conference, Rotterdam. Balkema.Google Scholar
  62. Wriggers, P., Van, T. V., and Stein, E. (1990). Finite-element-formulation of large deformation impact-contact-problems with friction. Computers and Structures, 37:319–333.MATHCrossRefGoogle Scholar
  63. Wriggers, P. and Zavarise, G. (1993a). On the application of augmented lagrangian techniques for nonlinear constitutive laws in contact interfaces. Communications in Applied Numerical Methods, 9:815–824.MATHCrossRefGoogle Scholar
  64. Wriggers, P. and Zavarise, G. (1993b). Thermomechanical contact — a rigorous but simple numerical approach. Computers and Structures, 46:47–53.CrossRefGoogle Scholar
  65. Zienkiewicz, O. C. and Taylor, R. L. (1989). The Finite Element Method, 4th Ed., volume 1. McGraw Hill, London.Google Scholar
  66. Zienkiewicz, O. C. and Taylor, R. L. (1991). The Finite Element Method, 4th Ed., volume 2. McGraw Hill, London.Google Scholar
  67. Zienkiewicz, O. C. and Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 24:337–357.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Peter Wriggers
    • 1
  1. 1.Institut für Baumechanik und Numerische MechanikUniversität HannoverGermany

Personalised recommendations