Hierarchic Modelling in Elasticity by generalized p- and hp-FEM

  • C. Schwab
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 416)


This C.I.S.M. course and these notes are about error control in computational mechanics. In contrast to the other lectures in the course, the notes will address the p- and hp-version FEM and the error control with these methods, as well as the modeling error control. The intended audience are applied mathematicians and computational engineers who want to obtain a quick, nontechnical overview over the p-version FEM in solids as well as on the issue of modeling error control.


Shell Model Polynomial Degree Discretization Error Exponential Convergence Spectral Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Actis: Doctoral Dissertation, Dept. of Mech. Engg., Washington University, St. Louis, MO, USA, (1991).Google Scholar
  2. [2]
    R. Actis, B. Szabó, C. Schwab: Hierarchic models for laminated plates and shells. Comput. Meths. Appl. Mech. Engg., 172 (1999), 79–107.MATHCrossRefGoogle Scholar
  3. [3]
    B. Andersson, U. Falk, I. Babuška and T. von Petersdorff: Reliable stress and fracture mechanics analysis of complex aircraft components using a hp-version FEM. Int. J. Num. Meth. Engg., 38 (1995), 2135–2163.MATHCrossRefGoogle Scholar
  4. [4]
    D.N. Arnold and R.S. Falk: Asymptotic Analysis of the boundary layer of the Reissner-Mindlin plate model. SIAM J. Math. Anal., 27 (1996), 486–514.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    I. Babuška, B.A. Szabo and R. Actis: Hierarchic Models of laminated composites. Int. J. Num. Meth. Engg., 33, (1992), 503–536.CrossRefGoogle Scholar
  6. [6]
    I. Babuška, B. Anderson, P. J. Smith, K. Levin: Damage Analysis of Fiber Composites. Part I: Statistical Analysis on Fiber Scale. Preprint No. 15, The Aeronautical Research Institute of Sweden, 1998.Google Scholar
  7. [7]
    I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta: Efficient preconditioning for the p version finite element method in two dimensions. SIAM J. Numer. Anal., 28 (1991), 624–661.CrossRefMathSciNetGoogle Scholar
  8. [8]
    I. Babuška and M. Suri: The p and hp Versions of the Finite Element Methods, Basic Principles and Properties. SIAM review, 36 (1994), 578–632.CrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Bernardi and Y. Maday: Approximations spectrales de problèmes aux limites elliptiques. Springer, 1992.Google Scholar
  10. [10]
    E. Bertoti and B.A. Szabo: Adaptive Selection of polynomial degrees on a Finite Element Mesh. Int. J. Num. Math. Engg., 42, (1998), 561–578.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Brezzi and M. Fortin: Mixed and hybrid Finite Element Methods. Springer Series in Comp. Mathematics vol. 15, Springer Verlag New York, 1991.MATHGoogle Scholar
  12. [12]
    C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zhang: Spectral Methods in Fluid Dynamics, Springer Verlag, 1986.Google Scholar
  13. [13]
    P. G. Ciarlet: The Finite Element Method for elliptic problems. North-Holland, 1978.Google Scholar
  14. [14]
    M. Dauge and I. Gruais: Asymptotics of arbitrary order for a thin elastic damped plate, parts I and II. Asymptotic Anal., 13 (1996), 167–197 and 16 (1998), 99–124.MATHMathSciNetGoogle Scholar
  15. [15]
    M. Dauge and C. Schwab: Boundary layer resolution in plates by hp-Finite Elements (in preparation).Google Scholar
  16. [16]
    L. Demkowicz, J.T. Oden, W. Rachowicz and O. Hardy: Toward a Universal hp Adaptive Finite Element Strategy. Part 1: Constrained Approximation and Data Structure. Computer Methods in Applied Mechanics and Engineering, 77 (1989), 79–112.CrossRefMathSciNetGoogle Scholar
  17. [17]
    L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer and T. Walsh: HP90: A general and flexible Fortran 90 hp-FE code. Computing and Visualization in Science, 1 (1998), 145–163.MATHCrossRefGoogle Scholar
  18. [18]
    K. Gerdes and C. Schwab: Hierarchic Models of Helmholtz problems on thin domains. Math. Mod. Meth. Appl. Sci., 8 (1998), 1–35.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    K. Gerdes, A.M. Matache and C. Schwab: Analysis of membrane locking in hp-FEM for a cylindrical shell. ZAMM 78 (1998), 663–686.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    W.J. Gordon and Ch.A. Hall: Transfinite Element Methods: Blending Function Interpolation over Arbitrary Curved Element Domains. Numer. Math., 21 (1973), 109–129MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    B. Guo and I. Babuška: The hp-version FEM I: The Basic Approximation Results; and Part II: General Results and Applications. Comp. Mech., 1 (1986), 21–41 and 203–226.MATHCrossRefGoogle Scholar
  22. [22]
    H. Hakula, Y. Leino and J. Pitkäranta: Scale Resolution, Locking and high-order FE Modeling of shells. Comp. Meth. Appl. Mech. Engg., 133 (1996), 157–182.MATHCrossRefGoogle Scholar
  23. [23]
    G.E. Karniadakis and S.J. Sherwin: Spectral/hp Element Methods for CFD. Oxford University Press, 1999Google Scholar
  24. [24]
    Y. Maday and A.T. Patera: Spectral Element Method for Navier-Stokes Equations. In: State of the Art Surveys in Computational Mechanics, (Ed. Noor), 71–143.Google Scholar
  25. [25]
    Y. Maday and E.M. Rønquist: Optimal error analysis of spectral method with emphasis on non-constant coefficients and deformed geometries. Comput. Meths. Appl. Mech. Engrg., 80 (1990), 91–115.MATHCrossRefGoogle Scholar
  26. [26]
    A. M. Matache: Spectral-and p-Finite Elements for problems with microstructure. Doctoral Dissertation, ETH Zürich (in preparation).Google Scholar
  27. [27]
    A. M. Matache, I. Babuška and C. Schwab: Generalized p-FEM in homogenization. To appear in Numer. Math.Google Scholar
  28. [28]
    A. M. Matache and C. Schwab: Homogenization via p-FEM for problems with microstructure. Report 99-09, Seminar für Angewandte Mathematik, ETH Zürich, Applied Numerical Math., 33 (2000), 32–59.MathSciNetGoogle Scholar
  29. [29]
    J.M. Melenk: On n-widths for elliptic problems. Tech. Report 98-02, Seminar für Angewandte Mathematik, ETH Zürich (in press in J. Math. Anal. Applic.).Google Scholar
  30. [30]
    M. Melenk, K. Gerdes and C. Schwab: Fully discrete hp-FEM I: Fast Quadrature. (in press in Comp. Meth. Appl. Mech. Engg.).Google Scholar
  31. [31]
    J.M. Melenk and C. Schwab: hp-FEM for Reaction-Diffusion Equations. I: Robust Exponential Convergence. SIAM J. Numer. Anal., 35 (1998), 1520–1557.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    J.T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann: Toward a Universal hp Adaptive Finite Element Strategy. Part 2: A Posteriori Error Estimation. Computer Methods in Applied Mechanics and Engineering, 77 (1989), 113–180.CrossRefMathSciNetGoogle Scholar
  33. [33]
    J. T. Oden, A. Patra and Y. Feng: Parallel Domain Decomposition Solver for Adaptive hp Finite Element Methods. SIAM J. Numer. Anal., 34 (1997), 2090–2118.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    O. A. Oleinik, A.S. Shamaev, G. A. Yosifian: Mathematical Problems in Elasticity and Homogenization. North-Holland, 1992.Google Scholar
  35. [35]
    S.A. Orszag: Spectral methods for problems in complex geometries. J. Comput. Phys., 37 (1980), 70–92.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    A.T. Patera: Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion. J. Comput. Phys., 54 (1984), 568–488.CrossRefGoogle Scholar
  37. [37]
    J. Pitkäranta, A.-M. Matache and C. Schwab: Fourier Modal Analysis of layers in shallow shell deformations. Report 99-18, Seminar for Applied Mathematics, ETH Zürich (to appear in Comp. Meth. Appl. Mech. Engg.).Google Scholar
  38. [38]
    J. Pitkäranta, Y. Leino, O. Ovaskainen and J. Piila: Shell deformation states and the FEM. Benchmark study of cylindrical shells. Comp. Meth. Appl. Mech. Engg., 128 (1995), 81–121.MATHCrossRefGoogle Scholar
  39. [39]
    R. Rannacher: Lectures on Error Estimation and Adaptation Techniques in FEM, these lecture notes.Google Scholar
  40. [40]
    C. Schwab: Boundary layer resolution in hierarchical models of laminated composites. RAIRO Anal. Numérique, 28 (1994), 517–537.MATHMathSciNetGoogle Scholar
  41. [41]
    C. Schwab: A-posteriori modeling error estimation for hierarchic plate models. Num. Math., 74 (1996), 221–259.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    C. Schwab: p and hp FEM. Oxford University Press, 1998.Google Scholar
  43. [43]
    C. Schwab and M. Suri. The p and hp Versions of the Finite Element Method for Problems with Boundary Layers. Math. Comp., 65 (1996) 1403–1429.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    C. Schwab, M. Suri and C.A. Xenophontos: The hp-FEM for problems in mechanics with boundary layers. Comp. Meth. Appl. Mech. Engg., 157 (1998), 311–333.MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    User Manual to STRIPE. Aeronautic Institute, Sweden.Google Scholar
  46. [46]
    Stresscheck. ESRD Inc., Scholar
  47. [47]
    T. Strouboulis, I. Babuška and S.K. Gangaraj: Guaranteed computable bounds for the exact error in the finite element solution, II: Bounds for the energy norm of the error in two dimensions. Int. J. Num. Meth. Engg. (1999), to appear.Google Scholar
  48. [48]
    B. Szabó and I. Babuska: Finite Element Analysis. Wiley, 1991.Google Scholar
  49. [49]
    B. Szabó: Large Strain and Deformation, Lecture Notes, Washington University, Dept. of Mech. Engg. (1998).Google Scholar
  50. [50]
    B.A. Szabó and G. Kiralyfalvi: Linear Models of buckling and stress-stiffening. Comput. Methods Appl. Mech. Engg., 171 (1999), 43–59.MATHCrossRefGoogle Scholar
  51. [51]
    B.A. Szabó and G.J. Sahrmann: Hierarchic Plate and shell models based on p-Extension. Int. J. Num. Meth. Engg., 26 (1998), 1855–1881.CrossRefGoogle Scholar
  52. [52]
    E. Trefftz: Zur Theorie der Stabilität des Elastischen Gleichgewichts. ZAMM 13 (1933), 160–165.Google Scholar
  53. [53]
    R. Verfürth: A Review of a-posteriori error estimation techniques for elasticity problem. Report 223/1997, Dept. of Mathematics, Ruhr-Universität Bochum, Deutschland.Google Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • C. Schwab
    • 1
  1. 1.Seminar für Angewandte MathematikETH Zürich, HG G 58.1ZürichSwitzerland

Personalised recommendations