Advertisement

Duality Techniques for Error Estimation and Mesh Adaptation in Finite Element Methods

  • Rolf Rannacher
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 416)

Summary

We present a general method for error control and mesh adaptivity in Galerkin finite element discretization of variational problems governed by differential equations. Our approach is based on the variational framework of projection methods and uses concepts from optimal control and sensitivity analysis. By employing global duality arguments and Galerkin orthogonality, we derive a posteriori error estimates in approximating quantities of physical interest such as, for example, point- or mean-values of boundary stresses. In these estimates the cellwise residuals of the computed solution are multiplied by weights which are obtained from the approximate solution of a dual problem. In this way, wo obtain the basis of a feed-back process by which the mesh is successively adapted, i.e. locally refined or coarsened, according to the particular goal of the computation. This method is systematically developed and analized at first for linear elliptic, parabolic as well as hyperbolic model problems. Then, it is extended to nonlinear problems with an application to the Hencky model of static elasto-plasticity. In the last two sections, we present applications in acoustics governed by the linear wave equation and for a nonlinear boundary control problem occuring in super-conductivity.

Keywords

Optimal Control Problem Dual Problem Posteriori Error Dual Solution Posteriori Error Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M, and Oden, J.T. (1997). A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142:1–88.MATHCrossRefMathSciNetGoogle Scholar
  2. Babuška, I., and Rheinboldt, W.C. (1978). Error estimates for adaptive finite element computations. SIAM J. Num. Anal. 15:736–754.CrossRefGoogle Scholar
  3. Bangerth, W., and Kanschat, G. (1999). Concepts for Object-Oriented Finite Element Software — the deal. II library. Preprint 99-43 (SFB 359), Universität Heidelberg.Google Scholar
  4. Bangerth, W., and Rannacher, R. (1999). Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J. Numer. Math. 7:263–282.MATHMathSciNetGoogle Scholar
  5. Bangerth, W., and Rannacher, R. (2003). Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, 2003.Google Scholar
  6. Becker, R. (1995). An Adaptive Finite Element Method for the Incompressible Navier-Stokes Equations on Time-Dependent Domains. Doctor Thesis, Preprint 95-44 (SFB 359), Universität Heidelberg.Google Scholar
  7. Becker, R. (2000). An optimal-control approach to a posteriori error estimation for finite element discretizations of the Navier-Stokes equations. East-West J. Numer. Math., 9:257–274.Google Scholar
  8. Becker, R. (2001). Mesh adaptation for stationary fbw control. J. Math. Fluid Mech., 3:317–341.MATHCrossRefMathSciNetGoogle Scholar
  9. Becker, R., Braack, M., Rannacher, R., and Waguet, C. (1999). Fast and reliable solution of the Navier-Stokes equations including chemistry. Comput. Visual. Sci 2:107–122.MATHCrossRefGoogle Scholar
  10. Becker, R., Braack, M., and Rannacher, R. (1999). Numerical simulation of laminar flames at low Mach number with adaptive finite elements. Combust. Theory Modelling 3:503–534.MATHCrossRefGoogle Scholar
  11. Becker, R., Johnson, C, and Rannacher R. (1995). Adaptive error control for multigrid finite element methods. Computing 55:271–288.MATHCrossRefMathSciNetGoogle Scholar
  12. Becker, R., Kapp, R., and Rannacher, R. (2000). Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Control Optim., 39, 113–132, 2000.MATHCrossRefMathSciNetGoogle Scholar
  13. Becker, R., and Rannacher, R. (1998). Weighted a posteriori error control in FE methods. Presented at ENUMATH-95, Paris, August 1995, published in Proc. ENUMATH-97 (Bock, H.G., et al., eds.), pp. 621–637, World Scient. Publ., Singapore.Google Scholar
  14. Becker, R., and Rannacher R. (1996). A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4:237–264.MATHMathSciNetGoogle Scholar
  15. Becker, R., and Rannacher R. (2001). An optimal control approach to a posteriori error estimation in finite element methods. In Acta Numerica 2001 (Iserles, A., ed.,), pp. 1–101, Cambridge University Press.Google Scholar
  16. Braack, M. (1998). An Adaptive Finite Element Method for Reactive Flow Problems. Doctor Thesis, Preprint 98-25 (SFB 359), Universität Heidelberg.Google Scholar
  17. Braack, M., and Rannacher R. (1999). Adaptive finite element methods for low-Mach-number flows with chemical reactions. In H. Deconinck, editor, 30th Computational Fluid Dynamics, Lecture Series, Vol. 1999–03, von Karman Institute for Fluid Dynamics, 1999.Google Scholar
  18. Brenner, S., and Scott, R.L. (1994). The Mathematical Theory of Finite Element Methods. Berlin-Heidelberg-New York: Springer.MATHGoogle Scholar
  19. Carey, G.F., and Oden, J.T. (1984). Finite Elements, Computational Aspects. Vol. III, Prentice-Hall.Google Scholar
  20. Ciarlet, P.G. (1984). Finite Element Methods for Elliptic Problems. Amsterdam: North-Holland.Google Scholar
  21. Ciarlet, P.G. (1991). Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. Amsterdam: North-Holland.Google Scholar
  22. Duvaut, G., and Lions, J. L. (1976). Inequalities in Mechanics and Physics. Berlin-Heidelberg-New York: Springer.MATHGoogle Scholar
  23. Du, Q., Gunzburger, M.D., and Peterson, J.S. (1992). Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34:54–81.MATHCrossRefMathSciNetGoogle Scholar
  24. Du, Q., Gunzburger and Hou, L.S. (1996). Finfte-dimensional approximation offa class of constrained nonlinear optimal control problems. SIAMJ. Control Optimization 34:1001–1043.CrossRefGoogle Scholar
  25. Eriksson, K., and Johnson, J. (1988). An adaptive finite element method for linear elliptic problems. Math. Comp. 50:361–383.MATHCrossRefMathSciNetGoogle Scholar
  26. Eriksson, K., Estep, D., Hansbo, P., and Johnson, J. (1995). Introduction to adaptive methods for differential equations. In Acta Numerica 1995 (Iserles, A., ed.,), pp. 105–158, Cambridge University Press.Google Scholar
  27. Führer, C, and Kanschat, G. (1997). Error control in radiative transfer. Computing 58:317–334.MATHMathSciNetGoogle Scholar
  28. Hartmann, R. (1998). A posteriori Fehlerschätzung und adaptive Schrittweiten-und Ortsgittersteuerung. bei Galerkin-Verfahren für die Wärmeleitungsgleichung. Diploma Thesis, Institut für Angewandte Mathematik, Universität Heidelberg.Google Scholar
  29. Houston, P., Rannacher, R., and Süli, E. (1999). A posteriori error analysis for stabilized finite element approximation of transport problems. Report No. 99/04, Oxford University Computing Laboratory, Oxford, 1999, to appear in Comput. Meth. Appl. Mech. Engrg.Google Scholar
  30. Hughes, T.J.R., and Brooks, A.N. (1982). Streamline upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Meth. Appl. Mech. Engrg. 32:199–259.MATHCrossRefMathSciNetGoogle Scholar
  31. Hughes, T.J.R., Franca, L.P., and Balestra, M. (1986). A new finite element formulation for computational fluid dynamics: V. Circumvent the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Comp. Methods Appl. Mech. Engrg. 59:89–99.MathSciNetGoogle Scholar
  32. Hulbert, G.M., and Hughes, T.J.R. (1990). Space-time finite element methods for second-order hyperbolic equations. Comp. Meth. Appl. Mech. Engrg. 84:327–348.MATHCrossRefMathSciNetGoogle Scholar
  33. Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge-Lund: Cambridge University Press.MATHGoogle Scholar
  34. Johnson, C. (1993). Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comp. Meth. Appl. Mech. Engrg. 107:117–129.MATHCrossRefGoogle Scholar
  35. Johnson, C. (1993). A new paradigm for adaptive finite element methods. In Proc. MAFELAP 93 (White-man, J., ed.), John Wiley.Google Scholar
  36. Johnson, C. (1976). Existence theorems for plasticity problems. J. Math. Pures Appl. 55:431–444.MATHMathSciNetGoogle Scholar
  37. Johnson, C, and Hansbo, P. (1991). Adaptive finite element methods for small strain elasto-plasticity. Preprint, Dep. of Math., Chalmers Univ. of Technology.Google Scholar
  38. Johnson, C, and Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. In Computer Methods in Applied Mechanics and Engineering, Vol. 101, Amsterdam: North-Holland.Google Scholar
  39. Kanschat, G. (1996). Parallel and Adaptive Galerkin Methfds for Radiative Transfer Problems. Doctor Thesis, Preprint 96-29 (SFB 359), Universität Heidelberg.Google Scholar
  40. Kanschat, G. (1997). Efficient and reliable solution of multi-dimensional radiative transfer problem. In Proc. Workshop Multiscale Phenomena and Their Simulation, Singapore: World Scient. Publ.Google Scholar
  41. Lions, J.L. (1971). Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer.MATHGoogle Scholar
  42. Machiels, L., Patera, A.T., and Peraire, J. (1998). Output bound approximation for partial differential equations; Application to the incompressible Navier-Stokes equations. In Proc. Workshop Industrial. and Environmental Applications of Direct and Large Eddy Numerical Simulation (Biringen, S., ed.), Springer.Google Scholar
  43. Machiels, L., Peraire, J., and Patera, A.T. (1999). A posteriori finite element output bounds for the incompressible Navier-Stokes equations; Application to a natural convection problem. MIT FML Report 99-4.Google Scholar
  44. Oden, J.T., Wu, Weihan, and Ainsworth, M. (1993). An a posteriori error estimate for finite element approximations of the Navier-Stokes equations. Comput. Meth. Appl. Mech. Engrg. 111:185–202.CrossRefMathSciNetGoogle Scholar
  45. Rannacher, R. (2000). A posteriori error analysis for nonlinear finite element approximations. Preprint, Institut für Angewandte Mathematik, Universität Heidelberg.Google Scholar
  46. Rannacher, R., and Suttmeier, F.-T. (1999). A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Meth. Appl. Mech. Engrg. 176:333–361.MATHCrossRefMathSciNetGoogle Scholar
  47. Suttmeier, F.-T. (1997). Adaptive Finite Element Approximation of Problems in Elasto-Plasticity Theory. Doctor Thesis, Preprint 97-11 (SFB 359), Universität Heidelberg.Google Scholar
  48. Verfürth, R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. New York-Stuttgart: John Wiley/Teubner.MATHGoogle Scholar
  49. Zienkiewicz, O.C., and Zhu, J.Z. (1993). A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Engrg. 24:337–357.CrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Rolf Rannacher
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Heidelberg INF 293HeidelbergGermany

Personalised recommendations