Experimental Microporomechanics

  • Franz-Josef Ulm
  • Antoine Delafargue
  • Georgios Constantinides
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 480)


Is it possible to break down natural porous material systems down to a scale where materials no longer change from one material to another, and upscale (‘nanoengineer’) the behavior from the nanoscale to the macroscale of engineering applications? — This is the challenging question we address in these lecture notes through a review of tools and methods of experimental microporomechanics. The combination of advanced experimental indentation techniques and microporomechanics theory provides a unique opportunity to understand and assess nanoproperties and microstructure, as a new basis for the engineering prediction of macroscopic poromechanical properties of natural composites. This is illustrated for cement-based materials and shales.


Indentation Depth Indentation Test Orientation Distribution Function Interfacial Transition Zone Indentation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Acker. Micromechanical analysis of creep and shrinkage mechanisms, In F.-J. Ulm, Z.P. Bažant, and F.H Wittmann, editors, Creep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials. Elsevier, Oxford UK, 15–25, 2001.Google Scholar
  2. D.M. Barnett and J. Lothe. Line force loadings on anisotropic half-spaces and wedges. J. Appl. Phys., 23:470–474, 1975.Google Scholar
  3. Z.P. Bažant. Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engrg. and Design, 20:477–505, 1972.CrossRefGoogle Scholar
  4. R.H. Bennett, N.R. O’Brien, and M.H. Hulbert. Determinants of clay and shale microfabric signatures: Processes and mechanisms. In R. Bennett, W. Bryant, M. Hulbert, editors, Microstructure of fine grained sediments: from mud to shale, Springer-Verlag, New York, Chapter 2, 5–32, 1991.Google Scholar
  5. A. Bentur. Effect of curing temperature on the pore structure of tricalcium silicate pastes. Journal of Colloid and Interface Science, 74(2):549–560, 1980.CrossRefGoogle Scholar
  6. O. Bernard, F.-J. Ulm, and E. Lemarchand. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem. Concr. Res., 33(8):1155–1173, 2003.CrossRefGoogle Scholar
  7. M.A. Biot. General theory of three dimensional consolidation. Journal of Applied Physics, 12:155–164, 1941.CrossRefGoogle Scholar
  8. F.M. Borodich, L.M. Keer, and C.S. Korach. Analytical study of fundamental nanoindentation test relations for indenters of non-ideal Shapes. Nanotechnology, 14:803–808, 2003.CrossRefGoogle Scholar
  9. F.M. Borodich and L.M. Keer. Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. Int. J. Solids Struct., 41: 2479–2499, 2004.zbMATHCrossRefGoogle Scholar
  10. J. Brittan, M. Warner, and G. Pratt. Short Note: Anisotropic parameters of layered media in terms of composite elastic properties. Geophysics, 60(4): 1243–1248, 1995.CrossRefGoogle Scholar
  11. X. Chateau and L. Dormieux. Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Meth, Geomech., 26:830–844, 2002.CrossRefGoogle Scholar
  12. Y.-T. Cheng and C.-M. Cheng. Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct, 36:1231–1243, 1999.zbMATHCrossRefGoogle Scholar
  13. Y.-T. Cheng and C.-M. Cheng. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering, R44:91–149, 2004.Google Scholar
  14. G. Constantinides, F.-J. Ulm, and K.J. van Vliet. On the use of nanoindentation for cementitious materials. Materials and Structures (Special issue of Concrete Science and Engineering) RILEM, 205:191–196, 2003.Google Scholar
  15. G. Constantinides and F.-J. Ulm. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res., 34(1):67–80, 2004.CrossRefGoogle Scholar
  16. G. Constantinides and F.-J. Ulm. Material invariant properties of cement-based materials: an experimental microporomechanics approach. MIT-CEE Res. Rep. R04-03 (Ph.D.-Dissertation), Cambridge, MA, In Preparation.Google Scholar
  17. O. Coussy. Mechanics of porous continua. J. Wiley & Sons, Chichester, UK, 1995.zbMATHGoogle Scholar
  18. O. Coussy. Poromechanics. J. Wiley & Sons, Chichester, UK, 2004.Google Scholar
  19. A. Delafargue and F.-J. Ulm. Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int. J. Solids Struct., 41: 7351–7360, 2004.zbMATHCrossRefGoogle Scholar
  20. A. Delafargue and F.-J. Ulm. Material invariant properties of shales: nanoindentation and microporoelastic analysis. MIT-CEE Res. Rep. R04-02 (SM-Dissertation), Cambridge, MA, 2004.Google Scholar
  21. M.F. Doerner and W.D. Nix. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res., 1:601–609, 1986.Google Scholar
  22. H.A. Elliot. Axial symmetric stress distributions in aelotropic hexagonal crystals: The problem of the plane and related problems. Proc. Camb. Phil. Soc., 45:621–630, 1949.CrossRefGoogle Scholar
  23. A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connely, S. Torquato, P.M. Chaikin. Improving the density of jammed disordered packings using ellipsoids. Science, 303:990–993, 2004.CrossRefGoogle Scholar
  24. L. Dormieux, A. Molinari, and D. Kondo. Micromechanical approach to the behaviour of poroelastic materials, J. Mech. Phys. Solids, 50:2203–2231, 2002.zbMATHCrossRefGoogle Scholar
  25. L. Dormieux and E. Bourgeois. Introduction à la micromécanique des milieux poreux. Presses de l’Ecole nationale des ponts et chaussées, Paris, France, 2003.Google Scholar
  26. A. El Omri, A. Fennan, F. Sidoroff, and A. Hihi A. Elastic-Plastic homogenization for layered composites. European Journal of Mechanics, A/Solids 19:585–601, 2000.zbMATHCrossRefGoogle Scholar
  27. J. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London, Series A, 241:376–396, 1957.zbMATHMathSciNetCrossRefGoogle Scholar
  28. R.F. Feldman and P.J. Sereda. A new model of hydrated cement and its practical implications. Eng. J. Can., 53:53–59, 1970.Google Scholar
  29. F.P. Ganneau and F.-J. Ulm. From nanohardness to strength properties of cohesive-frictional Materials — Application to shale materials. MIT-CEE Res. Rep. R04-01 (SM-Dissertation), Cambridge, MA, 2004.Google Scholar
  30. F.P. Ganneau, G. Constantinides, and F.-J. Ulm. Dual indentation technique for the assessment of strength properties of cohesive-frictional materials. Int. J. Solids Struct, (in review), 2004.Google Scholar
  31. E.J. Garboczi. Computational materials science of cement-based materials. Materials and Structures, RILEM, 26(2): 191–195, 1993.CrossRefGoogle Scholar
  32. M.T. Hanson. The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech., 59:S123–S130, 1992.Google Scholar
  33. Z. Hashin and P.J.M. Monteiro. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cem. Conor. Res., 32(8):1291–1300, 2002.CrossRefGoogle Scholar
  34. P. Helnwein. Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput. Methods Appl. Mech. Engrg., 190:2753–2770, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  35. F.H. Heukamp and F.-J. Ulm. Chemomechanics of calcium leaching of cement-based materials at different scales: The role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures. MIT-CEE Report R02-03 (D.Sc.-Dissertation), Cambridge, MA, 2002.Google Scholar
  36. H.G. Hopkins, A.D. Cox, and G. Eason. Axially symmetric plastic deformation in soils. Philosophical Transactions, Royal Society, A264:1–45, 1961.MathSciNetGoogle Scholar
  37. B. Hornby, L. Schwartz, and J. Hudson. Anisotropic effective medium modeling of the elastic properties of shales. Geophysics, 59(10):1570–1583, 1994.CrossRefGoogle Scholar
  38. B. Hornby. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. Journal of Geophysical Research, 103(B12), 29,945–29,964, 1998.CrossRefGoogle Scholar
  39. S. Igarashi, A. Bentur, and S. Mindess. Characterization of the microstructure and strength of cement paste by microhardness testing. Advances in Cement Research, 8(30):877–890, 1996.Google Scholar
  40. H.M. Jaeger and S.R. Nagel. ‘Physics of granular state. Science, 255(5051):1523–1531, 1992.CrossRefGoogle Scholar
  41. M. Jakobsen, J.A. Hudson, and T.A. Johansen. T-matrix approach to shale acoustics. Geophys. J. Int., 154:533–558, 2003.CrossRefGoogle Scholar
  42. H.M. Jennings. A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res., 30(1):101–116, 2000.CrossRefMathSciNetGoogle Scholar
  43. H.M. Jennings. Colloid model of C-S-H and implications to the problem of creep and shrinkage. Materials and Structures (Special issue of Concrete Science and Engineering) RILEM, 265:59–70, 2004.CrossRefGoogle Scholar
  44. T.A. Johansen, B.O. Ruud, and M. Jakobsen. Effect of grain scale alignment on seismic anisotropy and reflectivity of shales. Geophysical Prospecting, 52:133–149, 2004.CrossRefGoogle Scholar
  45. L.E.A. Jones and H.F. Wang. Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 46:288–297, 1994.CrossRefGoogle Scholar
  46. D. Katti, S. Schmidt, D. Gosh, and K. Katti. Modeling response of pyrophyllite clay interlayer to applied stress using steered moelcular dynamics. personal communication, 2003.Google Scholar
  47. N. Laws. A note on penny-shaped cracks in transversely isotropic materials. Mechanics of Materials, 4:209–212, 1985.CrossRefGoogle Scholar
  48. G.Q. Li, Y. Zhao, S.S. Pang, and Y.Q. Li. Effective Young’s modulus estimation of concrete. Cem. Concr. Res., 29(9):1455–1462, 1999.CrossRefGoogle Scholar
  49. D. Marion, A. Nur, H. Yin, and D. Han. Compressional velocity and porosity in sand-clay mixtures. Geophysics, 57(4):554–563, 1992.CrossRefGoogle Scholar
  50. M. Matar and J. Salençon. Capacité portante des fondations superficielles circulaires. Journal de Mechanique Théorique et Appliquée, 1(2):237–267, 1982. Available in English In Foundation Engineering, Volume 1, Soil properties-Foundation design and construction, Presse de l’Ecole Nationale des Ponts et Chaussées, France.zbMATHGoogle Scholar
  51. G. Mavko, T. Mukerji, and J. Dvorkin. The Rock Physics Handbook. Cambridge University Press, UK, 1998.Google Scholar
  52. J. Mitchell. Fundamentals of soil behavior. J. Wiley & Sons, New York, 1993.Google Scholar
  53. W.C. Oliver and G.M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7(6): 1564–1583, 1992.Google Scholar
  54. G.M. Pharr. Understanding nanoindentation unloading curves. J. Mater. Res., 17(10):2660–2671, 2002.Google Scholar
  55. T.C. Powers and T.L. Brownyard. Studies of the physical properties of hardened portland cement paste. PCA Bulletin 22, 1948.Google Scholar
  56. M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, W. Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophysical Research Letters, 29(8), 1172, 13-1–13-4, 2002.CrossRefGoogle Scholar
  57. L.F. Pratson, A. Stroujkova, D. Herrick, F. Boadu, and P. Malin. Predicting seismic velocity and other rock properties from clay content only. Geophysics, 68(6): 1847–1856, 2003.CrossRefGoogle Scholar
  58. J. Salençon. Calcul à la rupture et analyse limite. Presses de l’Ecole nationale des ponts et chaussées, Paris, France, 1983.Google Scholar
  59. C.M. Sayers. The elastic anisotrophy of shales, Journal of Geophysical Research, 99(B1):767–774, 1994.CrossRefGoogle Scholar
  60. C. Sayers. Stress-dependent seismic anisotropy of shales. Geophysics, 64(1):93–98, 1999.CrossRefGoogle Scholar
  61. N.J.A. Sloane. Kepler’s conjecture confirmed. Nature, 395:435–436, 1998.CrossRefGoogle Scholar
  62. I. Sneddon, editor. Application of integral transforms in the theory of elasticity. Springer Verlag, Wien-New York, 1977.Google Scholar
  63. P. Suquet, editor. Continuum micromechanics, CISM Courses and Lectures no. 377, 1997. Springer Verlag, Wien-New York.zbMATHGoogle Scholar
  64. J.G. Swadener and G.M. Pharr. Indentation modulus of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag., A81:447–466, 2001.Google Scholar
  65. P.D. Tennis and H.M. Jennings. A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes. Gem. Concr. Res., 30(6):855–863, 2000.CrossRefGoogle Scholar
  66. J.J. Thomas and H.M. Jennings. Effect of heat treatment on the pore structure and drying shrinkage behavior of hydrated cement paste. Journal of the American Ceramic Society, 85(9):2293–2298, 2002.Google Scholar
  67. L. Thomsen. Weak elastic anisotropy. Geophysics, 52(10):1954–1966, 1986.CrossRefGoogle Scholar
  68. L. Thomsen. Seismic anisotropy. Geophysics, 66:40–41, 2001.CrossRefGoogle Scholar
  69. I. Tsvankin. P-wave signatures and notation for transversely isotropic media: An overview. Geophysics, 61(2):467–483, 1996.CrossRefGoogle Scholar
  70. F.-J. Ulm and O. Coussy. Mechanics and durability of solids. Vol. I: Solid Mechanics. Prentice Hall, Upper Saddle River, New Jersey, 2003.Google Scholar
  71. F.-J. Ulm, G. Constantinides, and F.H. Heukamp. Is concrete a poromechanics material? — A multiscale investigation of poroelastic properties, Materials and Structures (Special issue of Concrete Science and Engineering), 265:43–58, 2004.CrossRefGoogle Scholar
  72. T. Vanorio, M. Prasad, and A. Nur. Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int., 155:319–326, 2003.CrossRefGoogle Scholar
  73. K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino. Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker. Cera. Goncr. Res., 31(4):555–561, 2001.Google Scholar
  74. B. Velde. Origin and mineralogy of clays. Springer-Verlag, New York, 1995.Google Scholar
  75. J.J. Vlassak and W.D. Nix. Indentation modulus of elastically anisotropic half spaces. Philos. Mag., A67(5): 1045–1056, 1993.Google Scholar
  76. J.J. Vlassak and W.D. Nix. Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids, 42(8):1223–1245, 1994.CrossRefGoogle Scholar
  77. J.J. Vlassak, M. Ciavarella, J.R. Barber, and X. Wang. The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids, 51:1701–1721, 2003.zbMATHCrossRefGoogle Scholar
  78. Z. Wang, H. Wang, and M.E. Cates. Effective elastic properties of solid clays. Geophysics, 66(2):428–440, 2001.CrossRefGoogle Scholar
  79. Z. Wang, Z. Seismic anisotropy in sedimentary rocks. Part 1: A single plug laboratory method; Part 2: Laboratory data. Geophysics, 67(5): 1415–1422 (part I) and 67(5): 1423-1440 (part II).Google Scholar
  80. J.R. Willis. Herztian contact of anisotropic bodies. J. Mech. Phys. Solids, 14:163–176, 1966.zbMATHCrossRefMathSciNetGoogle Scholar
  81. F.H. Wittmann. Bestimmung physikalischer Eigenschaften des Zementsteins. Deutscher Ausschuss fuer Stahlbeton, Heft 232:1–63, 1974, W. Ernst & Sohn, Berlin, Germany.Google Scholar
  82. F.H. Wittmann. Creep and shrinkage mechanisms in concrete. In Z.P. Bažant and F.H. Wittmann, editors. Creep & Shrinkage of Concrete, J. Wiley & Sons, New York, 1988.Google Scholar
  83. A. Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE), 128(8):808–816, 2002.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Franz-Josef Ulm
    • 1
  • Antoine Delafargue
    • 1
  • Georgios Constantinides
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations