Poroelasticity and strength of fully or partially saturated porous materials

  • Luc Dormieux
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 480)


To begin with, a mathematical framework for upscaling and averaging operations is proposed. The classical strategies for the definition of the mechanical loading applied to the representative elementary volume in terms of boundary conditions are recalled. This framework is first applied to a saturated porous medium in which the solid phase is linear elastic. This yields Biot’s poroelasticity theory together with estimates of the poroelastic coefficients and of the average strain level in the solid phase. The situation of a non linear elastic solid is then considered with the help of non linear homogenization techniques. A non linear theory of poroelasticity is derived as an application of the secant method which also allows to investigate the macroscopic strength. The existence of macroscopic effective stresses controlling the non linearity of the secant poroelastic coefficients and the strength criterion is discussed under various assumptions on the solid properties.To finish with, the capillary and surface tension effects are incorporated into a micromechanical approach to the poroelastic behavior and the strength of partially saturated porous media.


Representative Elementary Volume Macroscopic Stress Macroscopic Strain Deviatoric Strain Microscopic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.-L. Auriault and E. Sanchez-Palencia. Etude du comportement macroscopique d’un milieu poreux saturé déformable. Journal de Mécanique, 16:575–603, 1977.MATHMathSciNetGoogle Scholar
  2. J.F. Barthélémy and L. Dormieux. Détermination du critère de rupture macroscopique d’un milieu poreux par homogénéisation non linéaire. C.R. Mécanique, 331:77–84, 2003.CrossRefMATHGoogle Scholar
  3. J. Bear and Y. Bachmat. Introduction to the modelling of transport phenomena in porous media. Kluwer Academic Publishers, 1990.Google Scholar
  4. M.A. Biot. A general theory of three-dimensional consolidation. J. Appl. Phys., 12: 155–164, 1941.CrossRefGoogle Scholar
  5. X. Chateau and L. Dormieux. Micromechanics of saturated and unsaturated porous media. Int. J. Num. Anal. Meth. Geomech., 26:831–844, 2002.MATHCrossRefGoogle Scholar
  6. P. de Buhan and L. Dormieux. On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach. J. Mech. Phys. Solids, 44:1649–1667, 1996.CrossRefGoogle Scholar
  7. V. Deudé, L. Dormieux, D. Kondo, and S. Maghous. Micromechanical approach to nonlinear poroelasticity: application to cracked rocks. J. Eng. Mech., 128:848–855, 2002.CrossRefGoogle Scholar
  8. L. Dormieux, E. Lemarchand, D. Kondo, and E. Fairbairn. Elements of poromicromechanics applied to concrete. Concrete Sc. Eng. Mater. Struct., 265:31–42, 2004.Google Scholar
  9. L. Dormieux, A. Molinari, and D. Kondo. Micromechanical approach to the behavior of poroelastic materials. J. Mech. Phys. Solids, 50:2203–2231, 2002.MATHCrossRefGoogle Scholar
  10. H. Ene and E. Sanchez-Palencia. Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. Journal de Mécanique, 14:73–108, 1975.MATHMathSciNetGoogle Scholar
  11. J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A, 241:376–396, 1957.MATHMathSciNetCrossRefGoogle Scholar
  12. F. Gilbert. Description thermomécanique de milieux plusieurs constituants et application aux milieux poreux saturés. PhD thesis, Paris VI, 1987.Google Scholar
  13. Z. Hashin. Analysis of composite materials: a survey. J. Appl. Mech., 50:481–505, 1983.MATHCrossRefGoogle Scholar
  14. R. Hill. The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids, 15:79–95, 1967.CrossRefGoogle Scholar
  15. W. Kreher. Residual stresses and stored elastic energy of composites and polycristals. J. Mech. Phys. Solids, 38:115–128, 1990.MATHCrossRefGoogle Scholar
  16. J. Mandel. CISM Lecture notes No. 97, chapter Plasticité classique et viscoplasticité. Springer, 1972.Google Scholar
  17. P. Ponte-Castaneda. Non linear composites: effective constitutive behavior and microstructure evolution. In P. Suquet, editor, Continuum micromechanics. Springer, 1997.Google Scholar
  18. P. Suquet. Effective behavior of non linear composites. In P. Suquet, editor, Continuum micromechanics. Springer, 1997.Google Scholar
  19. M. Thompson and J.R. Willis. A reformulation of the equations of anisotropic poroelasticity. J. Appl. Mech., 58:612–616, 1991.MATHGoogle Scholar
  20. A. Zaoui. Matériaux hétérogènes et Composites. Cours de l’Ecole Poly technique, 1996.Google Scholar
  21. A. Zaoui. Continuum micromechanics: survey. J. Eng. Mech., 128:808–816, 2002.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Luc Dormieux
    • 1
  1. 1.Ecole Nationale des Ponts et ChausséesFrance

Personalised recommendations