Advertisement

Nonlinear Amplitude Equations and Soliton Excitations in Bose-Einstein Condensates

  • Guoxiang Huang
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 483)

Abstract

We consider the soliton excitations in Bose-Einstein condensates (BECs) with a repulsive interparticle interaction. We show that long wavelength nonlinear excitations can be described by the Korteweg-de Vries equation in a cigar-shaped BEC and by the Kadomtsev-Petviashvili equation in a disk-shaped BEC. The nonlinear excitations with a short wavelength in a disk-shaped BEC obey the Davey-Stewartson equations. We also show that it is possible to realize a second harmonic generation of the nonlinear excitations in a two-component BEC.

Keywords

Dark Soliton Matter Wave Bright Soliton Linear Dispersion Relation Nonlinear Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. J. Ablowitz and P. A. Clarkson. Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series 149, Camb. Univ. Press, 1991.Google Scholar
  2. G. P. Agrawal. Nonlinear Fiber Optics, 3rd ed. Academic, New York, 2001.Google Scholar
  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269: 198, 1995.CrossRefGoogle Scholar
  4. M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye, and W. Ketterle. Propagation of sound in a Bose-Einstein condensate. Phys. Rev. Lett 79: 553, 1998.CrossRefGoogle Scholar
  5. C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75: 1687, 1995.CrossRefGoogle Scholar
  6. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83: 5198, 1999.CrossRefGoogle Scholar
  7. S. Burger, L. D. Carr, P. Ohberg, K. Sengstock, and A. Sanpera. Generation and interaction of solitons in Bose-Einstein condensates. Phys. Rev. A 65: 043611, 2002; J. Brand and W. P. Reinhardt. Solitonic vortices and the fundamental modes of the snake instability: Possibility of observation in the gaseous Bose-Einstein condensate. Phys. Rev. A 65: 043612, 2002.CrossRefGoogle Scholar
  8. Th. Busch and J. R. Anglin, Motion of dark solitons in trapped Bose-Einstein condensates. Phys. Rev. Lett. 84: 2298, 2000; D. L. Feder, M. S. Pindzola, L. A. Collins, B. I. Schneider, and C. W. Clark. Dark-soliton states of Bose-Einstein condensates in anisotropic traps. Phys. Rev. A 62: 053606, 2000.CrossRefGoogle Scholar
  9. A. D. D. Craik, Wave Interactions and Fluid Flows. Cambridge Univ. Press, Cambridge, 1985.MATHGoogle Scholar
  10. W. Cui, C. Sun, and G. Huang. Dromion excitations in self-defocusing optical media. Chinese Phy. Lett. 20: 246, 2003.CrossRefGoogle Scholar
  11. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71: 463, 1999.CrossRefGoogle Scholar
  12. A. Davey and K. Stewartson. On three-dimensional packets of surface wave. Proc. R. Soc. London Ser. A 338: 101, 1974.MATHMathSciNetCrossRefGoogle Scholar
  13. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75: 3969, 1995.CrossRefGoogle Scholar
  14. L. Deng, E. W. Hagley, J. Win, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, and W. D. Phillips. Four-wave mixing with matter waves. Nature 398: 218, 1999.CrossRefGoogle Scholar
  15. J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhart, S. L. Rolston, B. I. Schneider, and W. D. Phillips. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287: 97, 2000.CrossRefGoogle Scholar
  16. P. G. Drazin and R. S. Johnson. Solitons: an Introduction. Cambridge Univ. Press, Cambridge, 1989.MATHGoogle Scholar
  17. A. Einstein. Quantentheorie des einatomigen idealen gases: Zweite abhandlung. Sitzungsbr. Klg. Preuss. Akad. Wiss. 3, 1925.Google Scholar
  18. E. V. Goldstein and P. Meystre, Phase conjugation of multicomponent Bose-Einstein condensates. Phys. Rev. A 59: 1509, 1999; K. Rzazewski, M. Trippenbach, S. J. Singer, and Y. B. Band. Statistics of atomic populations in output coupled wave packets from Bose-Einstein condensates: Four-wave mixing. Phys. Rev. A 61: 013606, 1999; M. G. Moore and P. Meystre. Theory of superradiant scattering of laser light from Bose-Einstein condensates. Phys. Rev. Lett. 83: 5202, 1999; Y. Wu, X. Yang, C. P. Sun, X. J. Zhou, and Y. Q. Wang. Theory of four-wave mixing with matter waves without the undepleted pump approximation. Phys. Rev. A 61: 043604, 2000; M. Trippenbach, Y. B. Band, and P. S. Julienne. Theory of four-wave mixing of matter waves from a Bose-Einstein condensate. Phys. Rev. A 62: 023608, 2000.CrossRefGoogle Scholar
  19. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87: 130402, 2001.CrossRefGoogle Scholar
  20. M. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426: 537, 2003.CrossRefGoogle Scholar
  21. R. Grimshaw. Korteweg-de Vries Equation, this volume.Google Scholar
  22. G. Huang. KdV description of solitons in Bose-Einstein condensation. Chinese Phys. Lett 18: 628, 2001.CrossRefGoogle Scholar
  23. G. Huang, M. G. Velarde, and V. A. Makarov. Dark solitons and their head-on collisions in Bose-Einstein condensates. Phys. Rev. A 64: 013617, 2001a.CrossRefGoogle Scholar
  24. G. Huang, V. V. Konotop, and M. G. Velarde. Nonlinear modulation of multidimensional lattice waves. Phys. Rev. E 64: 056619, 2001b.CrossRefMathSciNetGoogle Scholar
  25. G. Huang, J. Szeftel, and S. Zhu, Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates. Phys. Rev. A 65: 053605, 2002.CrossRefGoogle Scholar
  26. G. Huang, V. A. Makarov, and M. G. Velarde. Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap. Phys. Rev. A 67: 023604, 2003.CrossRefGoogle Scholar
  27. G. Huang, X.-q. Li, and J. Szeftel. Second-harmonic generation of Bogoliubov excitations in a two-component Bose-Einstein condensate. Phys. Rev. A 69: 065601, 2004.CrossRefGoogle Scholar
  28. S. Inouye, T. Pfau, S. Gupta, A. P. Chikkatur, A. Görlitz, D. E. Pritchard, and W. Ketterle. Phase-coherent amplification of atomic matter waves. Nature (London) 402:641, 1999a.CrossRefGoogle Scholar
  29. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle. Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 23: 571, 1999b.CrossRefGoogle Scholar
  30. D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell D. S. Jin et al. Collective excitations of a Bose-Einstein condensate in a dilute gas. Phys. Rev. Lett. 77: 420, 1996.CrossRefGoogle Scholar
  31. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker, J. Denschlag, and R. Grimm, Bose-Einstein condensation of molecules. Science 302:2101, 2003.CrossRefGoogle Scholar
  32. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon. Formation of a matter-wave bright soliton. Science 296: 1290, 2002.CrossRefGoogle Scholar
  33. D. B. Khismatulin and I. Sh. Akhatov. Sound-ultrasound interaction in bubbly fluids: Theory and possible applications. Phys. Fluids 13: 3582, 2001.CrossRefGoogle Scholar
  34. M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. W. Hagley, and L. Deng. Phase-coherent amplification of matter waves. Science 286: 2309, 1999.CrossRefGoogle Scholar
  35. A. J. Legget, Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73: 307, 2001.CrossRefGoogle Scholar
  36. H. Linde, X.-L. Chu, and M. G. Velarde. Oblique and head-on collisions of solitary waves in Marangoni-Bènard convection. Phys. Fluids A 5: 1068, 1993.CrossRefGoogle Scholar
  37. Mattews, M. R., B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83: 2498, 1999; K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84: 806, 2000; J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle. Observation of vortex lattices in Bose-Einstein condensates. Science 292: 476, 2001.CrossRefGoogle Scholar
  38. P. Meystre. Atom Optics. Springer-Verlag, New York, 2001.Google Scholar
  39. M. G. Moore and P. Meystre. Atomic four-wave mixing: fermions versus bosons. Phys. Rev. Lett. 86: 4199, 2001; W. Ketterle and S. Inouye. Does matter wave amplification work for fermions?. Phys. Rev. Lett. 86: 4203, 2001.CrossRefGoogle Scholar
  40. A. C. Newell and J. V. Moloney, Nonlinear Optics. Addison Wesley, Red Wood, CA, 1992.Google Scholar
  41. V. M. Perez-Garcia, H. Michinel, and H. Herrero. Bose-Einstein solitons in highly asymmetric traps. Phys. Rev. A 57: 3837, 1998; A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick. Solitary waves in clouds of Bose-Einstein condensed atoms. Phys. Rev. A 58: 2417, 1998; O. Zobay, S. Potting, P. Meystre, and E. M. Wright. Creation of gap solitons in Bose-Einstein condensates. Phys. Rev. A 59: 643, 1999; A. E. Muryshev, H. B. van Linden van den Heuvell, and G. V. Shlyapnikov. Stability of standing matter waves in a trap. Phys. Rev. A 60: R2665, 1999.CrossRefGoogle Scholar
  42. C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. (Cambridge University Press, Cambridge, 2002).Google Scholar
  43. S. L. Rolston and W. D. Phillips, Nonlinear and quantum atom optics. Nature 416: 219, 2002.CrossRefGoogle Scholar
  44. Y. R. Shen, The Principles of Nonlinear Optics. Wiley, New York, 1984.Google Scholar
  45. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet. Formation and propagation of matter-wave soliton trains. Nature (London) 417: 150, 2002.CrossRefGoogle Scholar
  46. C. H. Su and R. M. Mirie. On head-on collisions between two solitary waves. J. Fluid Mech. 98: 509, 1980.MATHCrossRefMathSciNetGoogle Scholar
  47. A. Trombettoni and A. Smerzi, Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86: 2353, 2001; P. Ohberg and L. Santos, Dark solitons in a two-component Bose-Einstein condensate. Phys. Rev. Lett. 86: 2918, 2001; B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86: 2926, 2001; P. D. Drummond, A. Eleftheriou, K. Huang, and K. V. Kheruntsyan. Theory of a mode-locked atom laser with toroidal geometry. Phys. Rev. A 63: 053602, 2001.CrossRefGoogle Scholar
  48. N. J. Zabusky and M. D. Kruskal. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15: 240, 1965.CrossRefGoogle Scholar
  49. O. Zobay, E. V. Goldstein, and P. Meystre. Atom holography. Phys. Rev. A 60: 3999, 1999.CrossRefGoogle Scholar
  50. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle. Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91: 250401, 2003.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Guoxiang Huang
    • 1
  1. 1.Department of PhysicsEast China UniversityShanghaiChina

Personalised recommendations