Wave Turbulence with Applications to Atmospheric and Oceanic Waves

  • V. Zeitlin
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 483)


We give a review of the main ideas and methods of the wave-turbulence theory and their applications to geophysical fluid dynamics. After having introduced the basic hypotheses leading to kinetic equations for ensembles of weakly nonlinear waves we explain the methods of finding stationary solutions, both for isotropic and weakly anisotropic dispersion relations. We then show how the method can be applied to waves in the atmosphere and ocean and review the known results in this area. Turbulence of the short inertia-gravity waves in the rotating shallow water model is considered at tempered latitudes and in the tropical region, and corresponding stationary spectra are found. Turbulence of the Rossby waves in the same model is also reviewed. Finally, the problem of turbulence of weakly nonlinear internal gravity waves in the continuously stratified fluid is addressed.


Kinetic Equation Rossby Wave Potential Vorticity Interaction Coefficient Oceanic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. T. Bacmeister et al, J. Geoph. Res. D, 5101: 9441–9441, 1996.CrossRefGoogle Scholar
  2. A.M. Balk and S.V. Nazarenko, Sov. Phys. JETP, 97: 1827–1845, 1990.MathSciNetGoogle Scholar
  3. D.J. Benney and P.G. Saffman, Proc. R. Soc. A, 289: 301–320, 1966.Google Scholar
  4. D.J. Benney and A.C. Newell, Stud. Appl. Math., 48: 29–35, 1969.MATHGoogle Scholar
  5. P. Caillol and V. Zeitlin, Dyn. Atmos. Oceans, 32: 81–112, 2000, Erratum: 33: 325–326, 2000.CrossRefGoogle Scholar
  6. S. Daubner and V. Zeitlin, Phys. Letters A, 214: 33–39, 1996.MATHCrossRefMathSciNetGoogle Scholar
  7. F.E. Falkovich and Medvedev, S.B. Europhys. Lett., 19: 279–284, 1992.Google Scholar
  8. A.A. Galeev and V.I. Karpman, Sov. Phys. JETP, 44: 592, 1963.Google Scholar
  9. K. Hasselmann, Proc. R. Soc. A, 299: 77–100, 1967.Google Scholar
  10. B.B. Kadomtsev and V.M. Kontorovich, The theory of turbulence in hydrodynamics and plasma, Sov. Phys. Radiophysics, 18: 511–540, 1974.Google Scholar
  11. A.V. Kats and V.M. Kontorivich, V.M., Sov. Phys. JETP, 37: 80–85; 1974 (Sov. Phys. JETP, 38: 102–107, 1973).Google Scholar
  12. K. Kenyon, Notes on the 1964 Summer Study Programme on GFD at WHOI, 11; 69, 1964.Google Scholar
  13. E.A. Kuznetsov, Sov. Phys. JETP, 35; 310–314, 1972.Google Scholar
  14. J. Le Sommer, G.M. Reznik, and V. Zeitlin, J. Fluid. Mech., 515: 35–170, 2004.CrossRefGoogle Scholar
  15. M. Longuet-Higgins and A.E. Gill, Proc. R. Soc. A, 299: 120–140, 1967.Google Scholar
  16. S.B. Medvedev and V. Zeitlin, Phys. Letters A, submitted, 2004.Google Scholar
  17. A.S. Monin and L.I. Piterbarg, Sov. Phys. Doklady, 32: 622–624, 1987.MATHGoogle Scholar
  18. P. Müller et al, Rev. Geophys., 24: 493–536, 1986.Google Scholar
  19. D. Olbers, J. Fluid Mech., 74: 375–379, 1976.MATHCrossRefGoogle Scholar
  20. E.N. Pelinovsky and M.A. Raevsky, Atm. Ocean Phys.-Izvestija, 13: 187–193, 1977.Google Scholar
  21. G.M. Reznik and T.E. Soomere, Sov. Phys. Oceanology, 23:923–927, 1983.Google Scholar
  22. G.M. Reznik, Sov. Phys. Oceanology, 25: 869–873, 1984.Google Scholar
  23. G.M. Reznik,, V. Zetlin and M. Ben Jelloul, J. Fluid Mech., 445: 93–120, 2001.MATHCrossRefMathSciNetGoogle Scholar
  24. R.Z. Sagdeev and A.A. Galeev, Nonlinear plasma theory, Benjamin, NY, 1969.Google Scholar
  25. S.V. Volotsky, A.V. Kats, and V.M. Kontorovich, Proceedings of the Ukranian Akademy of Science (in Russian), 11: 66–69, 1980.Google Scholar
  26. G.M. Zaslavsky and R.Z. Sagdeev, Sov. Phys. JETP, 52: 1081, 1967.Google Scholar
  27. V.E. Zakharov, Kolmogorov spectra in weak turbulence problems, in “Handbook of Plasma Physics”, Rozenbluth, M.N., Sagdeev, R.Z., Eds, 2: 3–36, 1984.Google Scholar
  28. V.E. Zakharov and N.N. Filonenko, Sov. Phys. Doklady, 170: 1292, 1966.Google Scholar
  29. V.E. Zakharov and L.I. Piterbarg, Sov. Phys. Doklady, 32: 560, 1987.MATHGoogle Scholar
  30. V.E. Zakharov, V.S. L’vov and G. Falkovich, Kolmogorov spectra of turbulence I, Springer, Berlin, 1992.MATHGoogle Scholar
  31. V. Zeitlin, Phys. Lett. A, 164: 177–183, 1992.`CrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • V. Zeitlin
    • 1
  1. 1.LMD-ENSParisFrance

Personalised recommendations