Waves with different wavenumbers and frequencies interact when they propagate in a nonlinear medium. In the weakly nonlinear limit, the interactions involve only small sets of waves (triads or quartets), and they are governed by simple amplitude equations. These lectures present the derivation of these amplitude equations, examine their properties and solutions, and discuss some applications to waves in fluids, in particular to Rossby waves and surface gravity waves.


Dispersion Relation Gravity Wave Rossby Wave Wave Interaction Interaction Coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. S. Alber, G. L. Luther, J. E. Marsden, and J. M. Robbins. Geometric phase, reduction and Lie-Poisson structure for the resonant three-wave interactions. Physica D, 123:271–290, 1998.MATHCrossRefMathSciNetGoogle Scholar
  2. N. J. Balmforth and P. J. Morrison. Hamiltonian description of shear flow. In Large-scale atmosphere-ocean dynamics, Vol. II, pages 117–142. Cambridge Univ. Press, 2002.Google Scholar
  3. J. M. Becker and R. Grimshaw. Explosive resonant triads in a continuously stratified shear flows. J. Fluid Mech., 257:219–228, 1993.MATHCrossRefMathSciNetGoogle Scholar
  4. F. P. Bretherton. Resonant interactions between waves. The case of discrete oscillations. J. Fluid Mech., 20:457–479, 1964.CrossRefMathSciNetGoogle Scholar
  5. K. M. Case. Stability of inviscid Couette flow. Phys. Fluids, 3:143–148, 1960.CrossRefMathSciNetGoogle Scholar
  6. A. D. D. Craik. Wave interactions and fluid flows. Cambridge University Press, 1985.Google Scholar
  7. A. D. D. Craik and J. A. Adam. Explosive resonant interaction in a three-layer fluid flow. J. Fluid Mech., 92:15–33, 1979.CrossRefGoogle Scholar
  8. A. E. Gill. Atmosphere-ocean dynamics. Academic Press, 1982.Google Scholar
  9. R. Grimshaw. Wave action and wave-mean flow interaction, with application to stratified shear flows. Ann. Rev. Fluid Mech., 16:11–44, 1984.CrossRefGoogle Scholar
  10. K. Hasselmann. A criterion for nonlinear wave stability. J. Fluid Mech., 30:737–739, 1967.MATHCrossRefGoogle Scholar
  11. D. D. Holm and V. Zeitlin. Hamilton’s principle for quasigeostrophic motion. Phys. Fluids, 10:800–806, 1998.CrossRefMathSciNetMATHGoogle Scholar
  12. S. Ichimaru. Basic principles of plasma physics: a statistical approach. W.A. Benjamin, 1973.Google Scholar
  13. E. L. Ince. Ordinary differential equations. Dover, 1956.Google Scholar
  14. D. J. Kaup, A. Reiman, and A. Bers. Space-time evolution of nonlinear three-wave interactions. I. interactions in a homogeneous medium. Rev. Mod. Phys., 51:275–309, 1979. Erratum: pp. 915–917.CrossRefMathSciNetGoogle Scholar
  15. P. J. Morrison. Hamiltonian description of the ideal fluid. Rev. Mod. Phys., 70:467–521, 1998.CrossRefMathSciNetGoogle Scholar
  16. J. Pedlosky. Geophysical fluid dynamics. Springer-Verlag, 1987.Google Scholar
  17. O. M. Phillips. The dynamics of the upper ocean. Cambridge University Press, 2nd edition, 1977.Google Scholar
  18. G. M. Reznik, L. I. Piterbarg, and E. A. Kartashova. Nonlinear interactions of spherical Rossby modes. Dyn. Atmos. Oceans, 18:235–252, 1993.CrossRefGoogle Scholar
  19. P. Ripa. On the theory of nonlinear wave-wave interactions among geophysical waves. J. Fluid Mech., 103:87–115, 1981.MATHCrossRefMathSciNetGoogle Scholar
  20. R. Salmon. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech., 20:225–256, 1988.CrossRefGoogle Scholar
  21. R. L. Seliger and G. B. Whitham. Variational principle in continuous mechanics. Proc. R. Soc. Lond. A, 305:1–25, 1968.MATHGoogle Scholar
  22. T. G. Shepherd. Symmetries, conservation laws and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32:287–338, 1990.Google Scholar
  23. W.F. Simmons. A variational method for weak resonant wave interactions. Proc. R. Soc. Lond. A, 309:551–575, 1969.CrossRefGoogle Scholar
  24. J. Vanneste. Explosive resonant interaction of baroclinic Rossby waves and stability of multilayer quasi-geostrophic flow. J. Fluid Mech., 291:83–107, 1995.MATHCrossRefMathSciNetGoogle Scholar
  25. J. Vanneste and T. G. Shepherd. On wave action and phase in the non-canonical Hamiltonian formulation. Proc. R. Soc. Lond. A, 455:3–21, 1999.MATHMathSciNetGoogle Scholar
  26. J. Vanneste and F. Vial. On the nonlinear interaction of geophysical waves in shear flows. Geophys. Astrophys. Fluid Dynam., 78:115–141, 1994.Google Scholar
  27. G. B. Whitham. Nonlinear dispersive waves. Proc. R. Soc. Lond. A, 283:238–261, 1965.MATHMathSciNetGoogle Scholar
  28. G. B. Whitham. Linear and nonlinear waves. Wiley, 1974.Google Scholar
  29. V. E. Zakharov, V.S. LVov, and G. Falkovich. Kolmogorov spectra of turbulence I: wave turbulence. Springer-Verlag, 1992.Google Scholar
  30. V.E. Zakharov and L.I. Piterbarg. Canonical variables for Rossby waves and plasma drift waves. Phys. Lett. A, 126:497–500, 1988.CrossRefMathSciNetGoogle Scholar
  31. V. Zeitlin. Vorticity and waves: geometry of phase-space and the problem of normal variables. Phys. Lett. A, 164:177–183, 1992.CrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • J. Vanneste
    • 1
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations