Weakly Nonlinear Wave Packets and the Nonlinear Schrödinger Equation

  • Frédéric Dias
  • Thomas Bridges
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 483)


This chapter describes weakly nonlinear wave packets. The primary model equation is the nonlinear Schrödinger (NLS) equation. Its derivation is presented for two systems: the Korteweg-de Vries equation and the water-wave problem. Analytical as well as numerical results on the NLS equation are reviewed. Several applications are considered, including the study of wave stability. The bifurcation of waves when the phase and the group velocities are nearly equal as well as the effects of forcing on the NLS equation are discussed. Finally, recent results on the effects of dissipation on the NLS equation are also given.


Solitary Wave Group Velocity Water Wave Wave Train Homoclinic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.J. Ablowitz and B.M. Herbst, On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM Journal of Applied Mathematics, 50:339–351, 1990.MATHCrossRefMathSciNetGoogle Scholar
  2. T. Akylas, On the excitation of nonlinear water waves by a moving pressure distribution oscillating at resonant frequency. Phys. Fluids, 27:2803–2807, 1984.MATHCrossRefMathSciNetGoogle Scholar
  3. T. Akylas, Envelope solitons with stationary crests. Phys. Fluids A, 5:789–791, 1993.MATHCrossRefGoogle Scholar
  4. T. Akylas, F. Dias, and R. Grimshaw, The effect of the induced mean flow on solitary waves in deep water. J. Fluid Mech., 355:317–328, 1998.MATHCrossRefMathSciNetGoogle Scholar
  5. J.S. Barnard, J.J. Mahony, and W.G. Pritchard, The excitation of surface waves near a cut-off frequency. Phil Trans. R. Soc. London A, 286:87–123, 1977.MathSciNetGoogle Scholar
  6. T.B. Benjamin and J.E. Feir, The disintegration of wavetrains in deep water. Part 1. J. Fluid Mech., 27:417–430, 1967.MATHCrossRefGoogle Scholar
  7. D.J. Benney and A.C. Newell, The propagation of nonlinear wave envelopes. J. Math, and Phys., 46:133–139, 1967.MATHMathSciNetGoogle Scholar
  8. T. J. Bridges, A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. Roy. Soc. London Ser. A, 453:1365–1395, 1997.MATHMathSciNetGoogle Scholar
  9. T. Bridges, P. Christodoulides, and F. Dias, Spatial bifurcations of interfacial waves when the phase and group velocities are nearly equal. J. Fluid Mech., 295:121–158, 1995.MATHCrossRefMathSciNetGoogle Scholar
  10. T. J. Bridges and F. Dias, On the enhancement of the Benjamin-Feir instability due to dissipation. preprint, 2004.Google Scholar
  11. T.J. Bridges and A. Mielke, A proof of the Benjamin-Feir instability. Arch. Rat. Mech. Anal, 133:145–198, 1995.MATHCrossRefMathSciNetGoogle Scholar
  12. R.A. Cairns, The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech., 92:1–14, 1979.MATHCrossRefGoogle Scholar
  13. T. Colin, F. Dias, and J.-M. Ghidaglia, On rotational effects in the modulations of weakly nonlinear water waves over finite depth. Eur. J. Mech. B/Fluids, 14:775–793, 1995.MATHMathSciNetGoogle Scholar
  14. W. Craig, C. Sulem, and P.L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity, 5:497–522, 1992.MATHCrossRefMathSciNetGoogle Scholar
  15. A.D.D. Craik, Wave Interactions and Fluid Flows. Cambridge University Press, 1988.Google Scholar
  16. F. Dias and G. Iooss, Capillary-gravity solitary waves with damped oscillations. Physica D, 65:399–423, 1993.MATHCrossRefMathSciNetGoogle Scholar
  17. F. Dias and G. Iooss, Capillary-gravity interfacial waves in deep water. Europ. J. Mech. B, 15:367–390, 1996.MATHMathSciNetGoogle Scholar
  18. F. Dias and G. Iooss, Water waves as a spatial dynamical system. In Handbook of Mathematical Fluid Dynamics, Vol. 2, Ed. S. Friedlander and D. Serre, Elsevier, pages 443–449, 2003.Google Scholar
  19. F. Dias and C. Kharif, Nonlinear gravity and capillary-gravity waves. Annu. Rev. of Fluid Mech., 31:301–346, 1999.CrossRefMathSciNetGoogle Scholar
  20. F. Dias, D. Menasce, and J.M. Vanden-Broeck, Numerical study of capillary-gravity solitary waves. Europ. J. Mech. B/Fluids, 15:17–36, 1996.MATHMathSciNetGoogle Scholar
  21. K.B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A, 369:105–114, 1979.MATHGoogle Scholar
  22. J.L. Hammack and D.M. Henderson, Resonant interactions among surface water waves. Annu. Rev. Fluid Mech., 25:55–97, 1993.CrossRefMathSciNetGoogle Scholar
  23. S.J. Hogan, The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A, 402:359–372, 1985.MATHGoogle Scholar
  24. G. Iooss and K. Kirchgässner, Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris, Série I, 311:265–268, 1990.MATHGoogle Scholar
  25. G. Iooss and P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal, 136:1–19, 1996.MATHCrossRefMathSciNetGoogle Scholar
  26. G. Iooss and M.-C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance fields. Journal of Differential Equations, 102:62–88, 1993.MATHCrossRefMathSciNetGoogle Scholar
  27. K. Kirchgässner, Nonlinearly resonant surface waves and homoclinic bifurcation. Adv. Applied Mech., 26:135–181, 1988.MATHGoogle Scholar
  28. V.P. Krasitskii, Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law. Sov. Phys. JETP, 71:921–927, 1990.Google Scholar
  29. O. Laget and F. Dias, Numerical computation of capillary-gravity interfacial solitary waves. J. Fluid Mech., 349:221–251, 1997.MATHCrossRefMathSciNetGoogle Scholar
  30. B.M. Lake, H.C. Yuen, H. Rungaldier, and W.E. Ferguson, Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech., 83:49–74, 1977.CrossRefGoogle Scholar
  31. H. Lamb, Hydrodynamics. Dover Publications, 1932.Google Scholar
  32. M.J. Lighthill M. J., Waves in fluids. Cambridge University Press, 1978.Google Scholar
  33. M. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water. J. Fluid Mech., 200:451–70, 1989.MATHCrossRefMathSciNetGoogle Scholar
  34. M.S. Longuet-Higgins, Capillary-gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech., 252:703–711, 1993.MATHCrossRefMathSciNetGoogle Scholar
  35. R.S. MacKay, Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett A, 155:266–268, 1991.CrossRefMathSciNetGoogle Scholar
  36. R.S. MacKay and P. Saffman, Stability of water waves. Proc. Roy. Soc. London Ser. A, 406:115–125, 1986.MATHMathSciNetGoogle Scholar
  37. A. Mielke, Steady flows of inviscid fluids under localized perturbations. J. Diff. Eq., 65:89–116, 1986.MATHCrossRefMathSciNetGoogle Scholar
  38. L.M. Milne-Thomson, Theoretical hydrodynamics. Dover Publications, 1968.Google Scholar
  39. M. Onorato, A.R. Osborne, M. Serio, and S. Bertone, Freak waves in random oceanic sea states. Phys. Rev. Lett., 86:5831–5834, 2001.CrossRefGoogle Scholar
  40. A.R. Osborne, M. Onorato, and M. Serio, The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A, 275:386–393, 2000.CrossRefMathSciNetMATHGoogle Scholar
  41. E. Părăau and F. Dias, Ondes solitaires forcées de capillarité-gravité. C. R. Acad. Sci. Pans I, 331:655–660, 2000.Google Scholar
  42. E. Părăau and F. Dias, Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech., 460:281–305, 2002.CrossRefMathSciNetGoogle Scholar
  43. D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B, 25:16–43, 1983.MATHMathSciNetCrossRefGoogle Scholar
  44. O.M. Phillips, Wave interactions — the evolution of an idea. J. Fluid Mech., 106:215–227, 1981.MATHCrossRefGoogle Scholar
  45. O.M. Rayleigh Lord, Proc. London Math. Soc, 15:69, 1883.CrossRefGoogle Scholar
  46. G. Schneider, Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation. Journal of Differential Equations, 147:333–354, 1998.MATHCrossRefMathSciNetGoogle Scholar
  47. H. Segur, D. Henderson, J. Hammack, C.-M. Li, D. Pheiff, and K. Socha, Stabilizing the Benjamin-Feir instability. preprint, 2004.Google Scholar
  48. M. Stiassnie, Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion, 6:431–433, 1984.MATHCrossRefMathSciNetGoogle Scholar
  49. J.J. Stoker, Water waves, the mathematical theory with applications. Wiley-Interscience, 1958.Google Scholar
  50. C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Springer, 1999.Google Scholar
  51. S.M. Sun, Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth. Proc. R. Soc. London Ser. A, 453:1153–1175, 1997.MATHGoogle Scholar
  52. J.-M. Vanden-Broeck and F. Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech., 240:549–557, 1992.MATHCrossRefMathSciNetGoogle Scholar
  53. J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM Journal of Numerical Analysis, 23:485–507, 1986.MATHCrossRefMathSciNetGoogle Scholar
  54. G.B. Whitham, Linear and nonlinear waves. Wiley-Interscience, 1974.Google Scholar
  55. T.S. Yang and T.R. Akylas, On asymmetric gravity-capillary solitary waves. J. Fluid Mech., 330:215–232, 1997.MATHCrossRefGoogle Scholar
  56. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz., 9:86–94, 1968 (Transl. in J. Appl. Mech. Tech. Phys., 9:190–194, 1968).Google Scholar
  57. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-modulating waves in non-linear media. Zh. Eksp. Teor. Fiz., 61:118, 1971 (Transl. in J. Exp. Theor. Phys., 34:62–69, 1972).Google Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Frédéric Dias
    • 1
  • Thomas Bridges
    • 2
  1. 1.Centre de Mathématiques et de Leurs ApplicationsEcole Normale Supérieure de CachanCachanFrance
  2. 2.Department of Mathematics and StatisticsUniversity of SurreyGuildfordUK

Personalised recommendations