Pistons and rings

Part of the Der Fahrzeugantrieb/Powertrain book series


Cylinder Wall Piston Ring Compression Ring Ring Pack Piston Crown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.8 Recommendations for further reading

  1. Reipert, P., Voigt, M.: Simulation of the piston/cylinder behavior for diesel engines. SAE 2001-01-0563, 2001.Google Scholar
  2. Keribar, R., Dursankaya, Z., Ganapathy, V.: An integrated design analysis methodology to address piston tribological issues. SAE 930793, 1993.Google Scholar
  3. Keribar, R., Morel, T.: Thermal shock calculations in I.C. engines. SAE 870162, 1987.Google Scholar
  4. Offner, G., Herbst, H.M., Priebsch, H.H.: A methodology to simulate piston secondary movement under lubricated contact conditions. SAE 2001-01-0565, 2001.Google Scholar
  5. Teraguchi, S., Suzuki, W., Takiguchi, M., Sato, D.: Effects of lubricating oil supply on reductions of piston slap vibration and piston friction. SAE 2001-01-0566, 2001.Google Scholar
  6. Hoffman, R.M., Sudjianto, A., Du, X., Stout, J.: Robust piston design and optimization using piston secondary motion analysis. SAE 2003-01-0148, 2003.Google Scholar
  7. Stout, J.L., Williams, R., Hoffman, R.: Eliminating piston slap through a design for robustness cae approach. SAE 2003-01-1728, 2003.Google Scholar
  8. Barnes, S.J., Lades, K.: The evolution of aluminum based piston alloys for direct injection diesel engines. SAE 2002-01-0493, 2002.Google Scholar
  9. Kemnitz, P., Maier, O., Klein, R.: Monotherm, a newforged steel piston design for highly loaded diesel engines. SAE 2000-01-0924, 2000.Google Scholar
  10. Fletcher-Jones, D., Adams, D.R., Barraclough, E., Avezou, J.C.: Optimization of piston pin hole shape. AE Group Symposium’ 86, Paper 31, 1986.Google Scholar
  11. Mihara, K., Inoue, H.: Effect of piston top ring design on oil consumption. SAE 950937, 1995.Google Scholar
  12. Murray, E.J., Holt, J.W., Inwood, B.C., Revello, P.L., Cecchi, L.: The development of compression ring design and surface treatments for future automotive engines. AE Group, Symposium’ 86, Paper 26, 1986.Google Scholar
  13. Reid, T.J., Haisell, O., Plant, R.: Design features of oil control rings. AE Group, Symposium’ 86, Paper 27, 1986.Google Scholar
  14. Tomanik, E., Nigro, F.E.B.: Piston ring pack and cylinder wear modeling. SAE 2001-01-0572, 2001.Google Scholar
  15. Furuhama, S., Hiruma, M., Tsuzita, M.: Piston ring motion and its influence on engine tribology. SAE 790860, 1979.Google Scholar
  16. Richardson, D.E., Borman, G.L.: Using fiber optics and laser fluorescence for measuring thin oil films with application to engines. SAE 912388, 1991.Google Scholar
  17. Dursunkaya, Z., Keribar, R., Richardson, D.E.: Experimental and numerical investigation of inter-ring gas pressures and blowby in a diesel engine. SAE 930792, 1993.Google Scholar
  18. Maassen, F., Koch, F., Schwaderlapp, M., Ortjohann, T., Dohmen, J.: Analytical and empirical methods for optimization of cylinder liner bore distortion. SAE 2001-01-0569, 2001.Google Scholar
  19. Lu, S., Iyer, K., Hu, S.J.: Functional characterization of surface roughness generated by plateau honing process using wavelet analysis. SAE 2004-01-1558, 2004.Google Scholar
  20. Schneider, E.W., Blossfeld, D.H., Lechman, D.C., Hill, R.F., Reising, R.F., Brevick, J.E.: Effect of cylinder bore out-of-roundness on piston ring rotation and engine oil consumption. SAE 930796, 1993.Google Scholar

Copyright information

© Springer-Verlag, Wien 2006

Personalised recommendations