Skip to main content

Biomechanik

  • Chapter
  • 693 Accesses

Schlussfolgerungen

Wichtig für ein besseres Verständnis des Injektionsvorganges bei der Vertebroplastik waren vor allem die Analyse der Bedeutung des Injektionsdruckes und der Zementviskosität für den Ausgang der Behandlung.

Die Betrachtung des theoretischen Modells des Injektionsdruckes lieferte ein erstaunliches Ergebnis. Ca. 95% des gesamten Injektionsdruckes wird dafür benötigt, die Reibung zwischen der Kanülenwand und dem Zement zu überwinden (extravertebraler Druck), und nur 5% des gesamten Injektionsdruckes ist notwendig für die Ausbreitung des Zementes in der Spongiosa (intravertebraler Druck). Die nachfolgenden Experimente haben bestätigt, dass der intravertebrale Druck deutlich geringer ist, als der extravertebrale Druck.

Die Analyse des Extravasationsrisikos ergab, dass vor allem durch die Verwendung eines höher viskösen Zementes dieses Risiko deutlich gesenkt werden kann. Außerdem würde ein niedrigerer Injektionsdruck und damit ein niedrigerer intravertebraler Druck die gleichmäßige Ausbreitung des Zementes begünstigen.

Zur Verbesserung des Injektionsprozesses haben wir eine neue Kanüle entwickelt. Diese trägt auf Grund ihrer Geometrie deutlich zur Senkung des Injektionsdruckes bei. Dadurch können höher visköse Zemente besser eingespritzt werden und das Risiko einer unzureichenden Füllung des Wirbelkörpers mit Zement wird gesenkt. Bis die neue Kanüle jedoch endgültig im klinischen Betrieb eingesetzt werden kann, sind weitere Tests erforderlich.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baroud G, Bohner M, Heini P, Steffen T (2001a) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14(4): 487–504

    Google Scholar 

  • Baroud G, Falk R, Crookshank M, Sponagel S, Steffen T (2001b) Experimental and theoretical investigation of the directional permeability of cancellous bone for cement infiltration. J Biomech 37(2): 189–96

    Google Scholar 

  • Baroud G, Martin P-L, Cabana F: Ex-vivo experiments of a new injection instrument for vertebroplasty. Spine J (in Druck)

    Google Scholar 

  • Baroud G, Vant C, Giannitsios D, Bohner M, Steffen T (2005a) Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty. Spine 30(1): 68–74

    PubMed  Google Scholar 

  • Baroud G, Wu JZ, Bohner M, Sponagel S, Steffen T (2003) How to determine the permeability for cement infiltration into osteoporotic cancellous bone. Med Eng Phys 25(4): 283–8

    Article  CAS  PubMed  Google Scholar 

  • Baroud G, Steffen T (2005b) A new cannula to ease cement injection during vertebroplasty. Eur Spine J 14(5): 474–9

    Article  CAS  PubMed  Google Scholar 

  • Bohner M, Gasser B, Baroud G, Heini P (2003) Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials 24(16): 2721–30

    Article  CAS  PubMed  Google Scholar 

  • Cotten A, Dewatre F, Cortet B, Assaker R, Leblond D, Duquesnoy B, Chastanet P, Clarisse J (1996) Percutaneous vertebroplasty for osteolytic metastases and myeloma: effect of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 200(2): 525–30

    CAS  PubMed  Google Scholar 

  • Deramond H, Depriester C, Galibert P, Le Gars D (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Radiol Clin North Am 36(3): 533–46

    Article  CAS  PubMed  Google Scholar 

  • Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones — a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2): 164–71

    Article  CAS  PubMed  Google Scholar 

  • Heini PF, Walchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9(5): 445–50

    Article  CAS  PubMed  Google Scholar 

  • Jensen AJ, Evans JM, Mathis (1997) Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 18(10): 1897–904

    CAS  PubMed  Google Scholar 

  • Krause WR, Miller J, Ng P (1982) The viscosity of acrylic bone cements. J Biomed Mater Res 16(3): 219–43

    Article  CAS  PubMed  Google Scholar 

  • Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol 22(2): 373–81

    CAS  PubMed  Google Scholar 

  • Naumann EA, Fong KE, Keaveny TM (1999) Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed En 27(4): 517–24

    Google Scholar 

  • San Millan Ruiz D, Burkhardt K, Jean B, Muster M, Martin JB, Bouvier J, Fasel JH, Rufenacht DA, Kurt AM (1999) Pathology findings with acrylic implants. Bone 25[2 Suppl]: 85–90

    Google Scholar 

  • Wilson DR, Myers ER, Mathis JM, Scribner RM, Conta JA, Reiley MA, Talmadge KD, Hayes WC (2000) Effect of augmentation on the mechanics of the vertebral wedge fractures. Spine 25(2): 158–65

    Article  CAS  PubMed  Google Scholar 

Literatur

  • Ananthakrishnan D, Lotz JC, Berven S, Puttlitz C (2003) Changes in spinal loading due to vertebral augmentation: vertebroplasty versus kyphoplasty. Annual Meeting of the American Academy of Orthopaedic Surgeons, New Orleans, p 472

    Google Scholar 

  • Baroud G, Goerke U, Beckman L, Steffen T (2001a) Physical changes of the vertebral tissue treated with vertebroplasty. XVIIIth Congress of International Society of Biomechanics, Zurich, p 728

    Google Scholar 

  • Baroud G, Steffen T (2001b) Poster Session: Load shift after augmenting osteoporotic vertebrae. J Biomech 34[1 Suppl]: 57

    Google Scholar 

  • Baroud G, Nemes J, Ferguson S, Steffen T (2003) Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation. Computer Methods in Biomechanics & Biomedical Engineering 6(2): 133–9

    Article  CAS  Google Scholar 

  • Baroud G, Nemes J, Heini P, Steffen T (2003) Load shift of the intervertebral disc after a vertebroplasty: a finiteelement study. Eur Spine J 12(4): 421–6

    Article  CAS  PubMed  Google Scholar 

  • Belkoff SM, Mathis JM, Erbe EM, Fenton DC (2000) Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 25(9): 1061–4

    Article  CAS  PubMed  Google Scholar 

  • Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behaviour. Spine 26(14): 1537–41

    CAS  PubMed  Google Scholar 

  • Belkoff SM, Mathis JM, Jasper LE (2002) Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol 23(10): 1647–51

    PubMed  Google Scholar 

  • Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84(5): 748–52

    Article  CAS  PubMed  Google Scholar 

  • Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8(8): 851–6

    CAS  PubMed  Google Scholar 

  • De Wijn JR (1976) Poly(methyl methacrylate)-aqueous phase blends: in situ curing porous materials. J Biomed Mater Res 10(4): 625–35

    PubMed  Google Scholar 

  • Dean JR, Ison KT, Gishen P (2000) The strengthening effect of percutaneous vertebroplasty. Clin Radiol 55(6): 471–6

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ, Berlemann U, Polikeit A, Heini PF, Nolte LP (2001) Are adjacent vertebrae at risk following vertebroplasty? J Biomech 34[1 Suppl]: 10

    Google Scholar 

  • Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29(20): 2270–76

    PubMed  Google Scholar 

  • Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 39(12): 1410–4

    Article  CAS  PubMed  Google Scholar 

  • Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones — a biomechanical investigation of vertebroplasty efficacy with different bone cement. Eur Spine J 10(2): 164–71

    Article  CAS  PubMed  Google Scholar 

  • Heini PF, Orler R (2004) Vertebroplastik bei hochgradiger Osteoporose Technik und Erfahrung mit plurisegmentalen Injektionen. Orhopade 33(1): 22–30

    CAS  Google Scholar 

  • Kim SH, Kang HS, Choi J-A, Ahn JM (2004) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiologica 45(4): 440–5(6)

    Article  CAS  PubMed  Google Scholar 

  • Legroux-Gerot I, Lormeau C, Boutry N, Cotten A, Duquesnoy B, Cortet B (2004) Long-term follow-up of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Clin Rheumatol 23(4): 310–7

    PubMed  Google Scholar 

  • Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26(14): 1547–54

    Article  CAS  PubMed  Google Scholar 

  • Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, et al (2001) Risk of new vertebral fracture in the year following a fracture. Jama 285(3): 320–3

    Article  CAS  PubMed  Google Scholar 

  • Lu WW, Cheung KM, Li YW, Luk KD, Holmes AD, Zhu QA, Leong JC (2001) Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 26(2): 2684–90; discussion 2690-1

    Article  CAS  PubMed  Google Scholar 

  • Polikeit A, Nolte LP, Ferguson SJ (2001) The effect of vertebroplasty on the load transfer in a functional spinal unit. J Biomech 34[1 Suppl]: 10–11

    Google Scholar 

  • Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28(10): 991–6

    Article  PubMed  Google Scholar 

  • Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone strength to the strength of human lumbar vertebrae. Calcif Tissue Res 3: 163–75

    Article  CAS  PubMed  Google Scholar 

  • Rohlmann A, Zander T, Jony A, Weber U, Bergmann G (2005) Einfluss der Wirbelkörpersteifigkeit vor und nach der Vertebroplastik auf den intradiskalen Druck. Biomed Technik 50(5): 148–52

    CAS  Google Scholar 

  • Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3(3): 120–6

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Liebschner AK (2004) Evolution of vertebroplasty: a biomechanical perspective. Annals of Biomed Eng 32(1): 77–91

    Google Scholar 

  • Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1): 119–24

    PubMed  Google Scholar 

  • Watts NB, Harris, ST, Genant HK (2001) Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int 12(6): 429–37

    Article  CAS  PubMed  Google Scholar 

  • Wilcox RK (2004) Do vertebroplasty cements have the optimum mechanical properties? Transactions of 7th World Biomaterials Congress, Sydney, Abstract 1547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag/Wien

About this chapter

Cite this chapter

Baroud, G., Schmidt, F., Baroud, G. (2006). Biomechanik. In: Becker, S., Ogon, M. (eds) Ballonkyphoplastie. Springer, Vienna. https://doi.org/10.1007/3-211-32315-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-211-32315-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23592-8

  • Online ISBN: 978-3-211-32315-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics