The virulence of the 1918 pandemic influenza virus: unraveling the enigma

  • J. K. Taubenberger


The 1918 influenza pandemic caused acute illness in 25–30% of the World’s population and resulted in the death of up to 40 million people. Using lung tissue of 1918 influenza victims, the complete genomic sequence of the 1918 influenza virus is being deduced. Neither the 1918 hemagglutinin nor neuraminidase genes possess mutations known to increase tissue tropicity that account for virulence of other influenza virus strains, such as A/WSN/33 or the highly pathogenic avian influenza H5 or H7 viruses. Using reverse genetics approaches, influenza virus constructs containing the 1918 hemagglutinin and neuraminidase on an A/WSN/33 virus background were lethal in mice. The genotypic basis of this virulence has not yet been elucidated. The complete sequence of the non-structural (NS) gene segment of the 1918 virus was deduced and also tested to determine the validity of the hypothesis that enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. Results from these experiments suggest that in human cells the 1918 NS1 is a very effective interferon antagonist. Sequence analysis of the 1918 influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help elucidate how pandemic influenza virus strains emerge and what genetic features contribute to virulence in humans.


Virus Strain Gene Segment Pandemic Virus Swine Virus Sialic Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barry JM (2004) The great influenza: the epic story of the deadliest plague in history. Viking Press, New York, NYGoogle Scholar
  2. 2.
    Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG, Zheng H, Salvatore M, Perdue ML, Swayne DE, Garcia-Sastre A, Palese P, Taubenberger JK (2001) Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci USA 98: 2746–2751PubMedCrossRefGoogle Scholar
  3. 3.
    Beveridge W (1977) Influenza: the last great plague, an unfinished story of discovery. Prodist, New YorkGoogle Scholar
  4. 4.
    Brown IH, Chakraverty P, Harris PA, Alexander DJ (1995) Disease outbreaks in pigs in Great Britain due to an influenza A virus of H1N2 subtype. Vet Rec 136: 328–329PubMedGoogle Scholar
  5. 5.
    Brown IH, Harris PA, McCauley JW, Alexander DJ (1998) Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79: 2947–2955PubMedGoogle Scholar
  6. 6.
    Burnet F, Clark E (1942) Influenza: a survey of the last 50 years in the light of modern work on the virus of epidemic influenza. MacMillan, MelbourneGoogle Scholar
  7. 7.
    Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG (1993) Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193: 503–506PubMedCrossRefGoogle Scholar
  8. 8.
    Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31: 417–427PubMedCrossRefGoogle Scholar
  9. 9.
    Chun J (1919) Influenza including its infection among pigs. Nat Med J (of China) 5: 34–44Google Scholar
  10. 10.
    Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303: 41–44PubMedCrossRefGoogle Scholar
  11. 11.
    Cox NJ, Subbarao K (2000) Global epidemiology of influenza: past and present. Annu Rev Med 51: 407–421PubMedCrossRefGoogle Scholar
  12. 12.
    Crosby A (2003) America’s forgotten pandemic: the influenza of 1918, new edn. Cambridge University Press, Cambridge, pp 17–32; 145–166, 203–306Google Scholar
  13. 13.
    Dimoch WW (1918–19) Diseases of swine. J Am Vet Med Assn 54: 321–340Google Scholar
  14. 14.
    Dorset M, McBryde CN, Niles WB (1922–23) Remarks on ‘hog’ flu. J Am Vet Med Assn 62: 162–171Google Scholar
  15. 15.
    Fanning TG, Slemons RD, Reid AH, Janczewski TA, Dean J, Taubenberger JK (2002) 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J Virol 76: 7860–7862PubMedCrossRefGoogle Scholar
  16. 16.
    Frost W (1920) Statistics of influenza morbidity. Pub Health Rep 35: 584–597Google Scholar
  17. 17.
    Gambaryan A, Tuzikov A, Piskarev V, Yamnikova S, Lvov D, Robertson J, Bovin N, Matrosovich M (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232: 345–350PubMedCrossRefGoogle Scholar
  18. 18.
    Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303: 1838–1842PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324–330PubMedCrossRefGoogle Scholar
  20. 20.
    Garcia-Sastre A (2002) Mechanisms of inhibition of the host interferon alpha/beta-mediated antiviral responses by viruses. Microbes Infect 4: 647–655PubMedCrossRefGoogle Scholar
  21. 21.
    Gaydos J, Hodder R, Top FJ, Soden V, Allen R, Bartley J, Zabkar J, Nowosiwsky T, Russell P (1977) Swine influenza A at Fort Dix, New Jersey (January–February 1976). I. Case finding and clinical study of cases. J Infect Dis 136: 356–362Google Scholar
  22. 22.
    Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, Garcia-Sastre A (2002) Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci USA 99: 10736–10741PubMedCrossRefGoogle Scholar
  23. 23.
    Glaser L, Zamarin D, Taubenberger JK, Palese P (2005) A single amino acid substitution in the 1918 Influenza virus hemagglutinin changes the receptor binding specificity. J Virol (in press)Google Scholar
  24. 24.
    Grove RD, Hetzel AM (1968) Vital statistics rates in the United States: 1940–1960. US Government Printing Office, Washington, DCGoogle Scholar
  25. 25.
    Hay A, Wolstenholme A, Skehel J, Smith M (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO 4: 3021–3024Google Scholar
  26. 26.
    Holsinger LJ, Nichani D, Pinto LH, Lamb RA (1994) Influenza A virus M2 ion channel protein: a structure-function analysis. J Virol 68: 1551–1563PubMedGoogle Scholar
  27. 27.
    Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 76: 105–115PubMedGoogle Scholar
  28. 28.
    Jordan E (1927) Epidemic influenza: a survey. American Medical Association, Chicago, pp 60–256Google Scholar
  29. 29.
    Kanegae Y, Sugita S, Sortridge K, Yoshioka Y, Nerome K (1994) Origin and evolutionary pathways of the H1 hemagglutinin gene of avian, swine and human influenza viruses: cocirculation of two distinct lineages of swine viruses. Arch Virol 134: 17–28PubMedCrossRefGoogle Scholar
  30. 30.
    Kash JC, Basler CF, Garcia-Sastre A, Carter V, Billharz R, Swayne DE, Przygodzki RM, Taubenberger JK, Palese P, Katze MG, Tumpey TM (2004) The global host immune response: contribution of HA and NA genes from the 1918 Spanish influenza to viral pathogenesis. J Virol 78: 9499–9511PubMedCrossRefGoogle Scholar
  31. 31.
    Kawaoka Y, Webster RG (1988) Molecular mechanism of acquisition of virulence in influenza virus in nature. Microb Pathog 5: 311–318PubMedCrossRefGoogle Scholar
  32. 32.
    Koen JS (1919) A practical method for field diagnoses of swine diseases. Am J Vet Med 14: 468–470Google Scholar
  33. 33.
    Kolata GB (1999) Flu: the story of the great influenza pandemic of 1918 and the search for the virus that caused it. Farrar Straus & Giroux, New York City, p 3–33Google Scholar
  34. 34.
    Krug RM, Yuan W, Noah DL, Latham AG (2003) Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309: 181–189PubMedCrossRefGoogle Scholar
  35. 35.
    Kupradinun S, Peanpijit P, Bhodhikosoom C, Yoshioka Y, Endo A, Nerome K (1991) The first isolation of swine H1N1 influenza viruses from pigs in Thailand. Arch Virol 118: 289–297PubMedCrossRefGoogle Scholar
  36. 36.
    Lamb R, Krug R (2001) Orthomyxoviridae: the viruses and their replication. In: Knipe D, Howley P (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, PA, vol 1, pp 1487–1531Google Scholar
  37. 37.
    Lamb RA, Lai CJ (1980) Sequence of interrupted and uninterrupted mRNAs and cloned DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell 21: 475–485PubMedCrossRefGoogle Scholar
  38. 38.
    Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440–454PubMedCrossRefGoogle Scholar
  39. 39.
    LeCount ER (1919) The pathologic anatomy of influenzal bronchopneumonia. J Am Med Assoc 72: 650–652Google Scholar
  40. 40.
    Li S, Schulman J, Itamura S, Palese P (1993) Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 67: 6667–6673PubMedGoogle Scholar
  41. 41.
    Li Y, Yamakita Y, Krug R (1998) Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci USA 95: 4864–4869PubMedCrossRefGoogle Scholar
  42. 42.
    Linder FE, Grove RD (1943) Vital statistics rates in the United States: 1900–1940. Government Printing Office, Washington, D.C., pp 254–255Google Scholar
  43. 43.
    Ludendorff E (1919) Meine Kriegserinnerungen 1914–1918. Ernst Siegfried Mittler und Sohn Verlagsbuchhandlung, Berlin, p 515Google Scholar
  44. 44.
    Marks G, Beatty WK (1976) Epidemics. Scribner, New York City, pp 273–275Google Scholar
  45. 45.
    Matrosovich M, Gambaryan A, Teneberg S, Piskarev V, Yamnikova S, Lvov D, Robertson J, Karlsson K (1997) Avian influenza a viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233: 224–234PubMedCrossRefGoogle Scholar
  46. 46.
    Ministry of Health UK (1960) The influenza epidemic in England and Wales 1957–1958 Reports on Public Health and Medical Subjects. Ministry of Health, London, vol 100Google Scholar
  47. 47.
    Monto AS, Iacuzio DA, La Montaigne JR (1997) Pandemic influenza: confronting a re-emergent threat. J Infect Dis 176: 1–3Google Scholar
  48. 48.
    Murray C, Biester HE (1930) Swine influenza. J Am Vet Med Assn 76: 349–355Google Scholar
  49. 49.
    Nerome K, Ishida M, Oya A, Oda K (1982) The possible origin H1N1 (Hsw1N1) virus in the swine population of Japan and antigenic analysis of the isolates. J Gen Virol 62: 171–175PubMedGoogle Scholar
  50. 50.
    O’Neill RE, Talon J, Palese P (1998) The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. Embo J 17: 288–296PubMedCrossRefGoogle Scholar
  51. 51.
    Palese P, Compans RW (1976) Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol 33: 159–163PubMedCrossRefGoogle Scholar
  52. 52.
    Patterson KD, Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull Hist Med 65: 4–21PubMedGoogle Scholar
  53. 53.
    Reid AH, Fanning TG, Hultin JV, Taubenberger JK (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 96: 1651–1656PubMedCrossRefGoogle Scholar
  54. 54.
    Reid AH, Taubenberger JK (1999) The 1918 flu and other influenza pandemics: “over there” and back again. Lab Invest 79: 95–101PubMedGoogle Scholar
  55. 55.
    Reid AH, Fanning TG, Janczewski TA, Taubenberger JK (2000) Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. Proc Natl Acad Sci USA 97: 6785–6790PubMedCrossRefGoogle Scholar
  56. 56.
    Reid AH, Fanning TG, Janczewski TA, McCall S, Taubenberger JK (2002) Characterization of the 1918 “Spanish” influenza virus matrix gene segment. J Virol 76: 10717–10723PubMedCrossRefGoogle Scholar
  57. 57.
    Reid AH, Janczewski TA, Lourens RM, Elliot AJ, Daniels RS, Berry CL, Oxford JS, Taubenberger JK (2003) 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis 9: 1249–1253PubMedGoogle Scholar
  58. 58.
    Reid AH, Taubenberger JK (2003) The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol 84: 2285–2292PubMedCrossRefGoogle Scholar
  59. 59.
    Reid AH, Fanning TG, Janczewski TA, Lourens R, Taubenberger JK (2004) Novel origin of the 1918 pandemic influenza virus nucleoprotein gene segment. J Virol 78: 12462–12470PubMedCrossRefGoogle Scholar
  60. 60.
    Rosenau MJ, Last JM (1980) Maxcy-Rosenau preventative medicine and public health. Appleton-Century-Crofts, New York City, p 116Google Scholar
  61. 61.
    Rott R, Klenk HD, Nagai Y, Tashiro M (1995) Influenza viruses, cell enzymes, and pathogenicity. Am J Respir Crit Care Med 152: 16–19Google Scholar
  62. 62.
    Schulze IT (1997) Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176[Suppl 1]: 24–28Google Scholar
  63. 63.
    Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8: 950–954PubMedCrossRefGoogle Scholar
  64. 64.
    Shope R (1958) Influenza: history, epidemiology, and speculation. Pub Health Rep 73: 165–178Google Scholar
  65. 65.
    Shope RE, Lewis PA (1931) Swine influenza. J Exp Med 54Google Scholar
  66. 66.
    Shope RE (1936) The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J Exp Med 63: 669–684CrossRefGoogle Scholar
  67. 67.
    Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K (1998) Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis 178: 53–60PubMedGoogle Scholar
  68. 68.
    Simonsen L, Fukuda K, Schonberger LB, Cox NJ (2000) The Impact of Influenza Epidemics on Hospitalizations. J Infect Dis 181: 831–837PubMedCrossRefGoogle Scholar
  69. 69.
    Smith W, Andrewes C, Laidlaw P (1933) A virus obtained from influenza patients. Lancet 225: 66–68CrossRefGoogle Scholar
  70. 70.
    Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303: 1866–1870PubMedCrossRefGoogle Scholar
  71. 71.
    Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A (2000) Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74: 7989–7996PubMedCrossRefGoogle Scholar
  72. 72.
    Taubenberger J, Reid A, Fanning T (2000) The 1918 influenza virus: a killer comes into view. Virology 274: 241–245PubMedCrossRefGoogle Scholar
  73. 73.
    Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG (1997) Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275: 1793–1796PubMedCrossRefGoogle Scholar
  74. 74.
    Taubenberger JK, Reid AH, Janczewski TA, Fanning TG (2001) Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos Trans R Soc Lond B Biol Sci 356: 1829–1839PubMedCrossRefGoogle Scholar
  75. 75.
    Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289: 179–186PubMedCrossRefGoogle Scholar
  76. 76.
    Tumpey TM, Garcia-Sastre A, Mikulasova A, Taubenberger JK, Swayne DE, Palese P, Basler CF (2002) Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA 99: 13849–13854PubMedCrossRefGoogle Scholar
  77. 77.
    Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Basler CF (2004) Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci USA 101: 3166–3171PubMedCrossRefGoogle Scholar
  78. 78.
    United States Department of Commerce (1976) Historical statistics of the United States: Colonial times to 1970. Government Printing Office, Washington, D.C.Google Scholar
  79. 79.
    Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A (2000) Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 74: 11566–11573PubMedCrossRefGoogle Scholar
  80. 80.
    Webster R, Rott R (1987) Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50: 665–666PubMedCrossRefGoogle Scholar
  81. 81.
    Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333: 426–431PubMedCrossRefGoogle Scholar
  82. 82.
    Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289: 366–373PubMedCrossRefGoogle Scholar
  83. 83.
    Winternitz MC, Wason IM, McNamara FP (1920) The pathology of influenza. Yale University Press, New Haven, pp 13–39Google Scholar
  84. 84.
    Wolbach SB (1919) Comments on the pathology and bacteriology of fatal influenza cases, as observed at Camp Devens, Mass. Johns Hopkins Hospital. Bulletin 30: 104Google Scholar
  85. 85.
    Woods GT, Schnurrenberger PR, Martin RJ, Tompkins WA (1981) Swine influenza virus in swine and man in Illinois. J Occup Med 23: 263–267PubMedGoogle Scholar
  86. 86.
    Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon KJ, Krauss S, Webster RG (2000) Emergence of H3N2 reassortant influenza A viruses in North American pigs. Vet Microbiol 74: 47–58PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • J. K. Taubenberger
    • 1
  1. 1.Department of Molecular PathologyArmed Forces Institute of PathologyRockvilleUSA

Personalised recommendations