Skip to main content

Summary

Arthropod-borne virus (arbovirus) diseases (ABVDs) remain major threats to human health and well-being and, as an epidemiologic group, inflict an unacceptable health and economic burden on humans and animals, including livestock. The developed world has been fortunate to have escaped much of the burden that arboviruses and their arthropod vectors inflict on humans in disease endemic countries, but the introduction and rapid spread of West Nile virus in the Western Hemisphere demonstrated that we can no longer be complacent in the face of these emerging and resurging vector-borne diseases. Unfortunately, as the burdens and threats of ABVDs have increased, the U.S. and international public health capacity to address them has decreased. Vaccines are not available for most of these agents. Previously successful strategies to control ABVDs emphasized vector control, but source reduction and vector control strategies using pesticides have not been sustainable. New insights into vector biology and vector pathogen interactions, and the novel targets that likely will be forthcoming in the vector post-genomics era, provide new targets and opportunities for vector control and disease reduction programs. These findings and approaches must be incorporated into existing strategies if we are to control these important pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE (2001) Sindbis virus induced silencing of dengue viruses in mosquitoes. Insect Mol Bio 10: 265–273

    Article  CAS  Google Scholar 

  2. Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, Blair CD, Olson KE (2002) RNA silencing of dengue-2 virus replication in transformed C6/36 mosquito cells transcribing an inverted repeat RNA derived from the virus genome. J Virol 76: 12925–12933

    Article  PubMed  CAS  Google Scholar 

  3. Allen ML, O’Brochta DA, Atkinson PW, Levesque CS (2001) Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol (5): 701–710

    Google Scholar 

  4. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH (2002) Malaria control with genetically manipulated insect vectors. Science 28(5591): 119–121

    Article  Google Scholar 

  5. Aspen S, Savage HM (2003) Polymerase chain reaction assay identifies North American members of the Culex pipiens complex based on nucleotide sequence differences in the acetylcholinesterase gene Ace.2. J Am Mosq Control Assoc (4): 323–238

    Google Scholar 

  6. Attaran A, Roberts DR, Curtis CF, Kilama WL (2000) Balancing risks on the backs of the poor. Nat Med 6(7): 729–731

    Article  PubMed  CAS  Google Scholar 

  7. Attardo GM, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS (2003) RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(23): 13374–13379

    Article  PubMed  CAS  Google Scholar 

  8. Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47: 123–141

    Article  PubMed  CAS  Google Scholar 

  9. Beaty BJ (2000) Genetic manipulation of vectors: a potential novel approach for control of vector-borne diseases. Proc Natl Acad Sci USA 97: 10295–10297

    Article  PubMed  CAS  Google Scholar 

  10. Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan JA, Higgs S, Black WC, Beaty BJ (2002) Variation in vector competence for dengue-2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 85–92

    PubMed  Google Scholar 

  11. Black WC, Baer CF, Antolin MF, Du Teau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46: 441–469

    Article  PubMed  CAS  Google Scholar 

  12. Black WC, Bennett KE, Gorrochotegui-Escalante N, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Olson KE, Beaty BJ (2002) Genetics of flavivirus susceptibility in Aedes aegypti. Arch Med Res 33(4): 379–388

    Article  PubMed  CAS  Google Scholar 

  13. Bolshakov VN, Topalis P, Blass C, Kokoza E, della Torre A, Kafatos FC, Louis C (2002) A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae. Genome Res 12(1): 57–66

    Article  PubMed  CAS  Google Scholar 

  14. Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black W (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698

    PubMed  CAS  Google Scholar 

  15. Campos J, Andrade CF (2003) Larval susceptibility of Aedes aegypti and Culex quinquefasciatus populations to chemical insecticides. Rev Saude Publica 37(4): 523–527

    PubMed  Google Scholar 

  16. Caplen NJ, Zheng Z, Falgout B, Morgan RA (2002) Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther 6(2): 243–251

    Article  PubMed  CAS  Google Scholar 

  17. Carlson J, Higgs S, Olson K, Beaty B (1995) Molecular manipulation of mosquitoes. Ann Rev Entomol 40: 359–388

    Article  CAS  Google Scholar 

  18. Carter R (2001) Transmission-blocking malaria vaccines. Vaccine 19: 2309–2314

    Article  PubMed  CAS  Google Scholar 

  19. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789): 959–962

    Article  PubMed  CAS  Google Scholar 

  20. Coates CJ, Jasinskiene N, Miyashiro L, James AA (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95: 3748–3751

    Article  PubMed  CAS  Google Scholar 

  21. Collins FH, Kamau L, Ranson HA, Vulule JM (2000) Molecular entomology and prospects for malaria control. BullWorld Health Organ 78: 1412–1423

    CAS  Google Scholar 

  22. Committee on Foreign Animal Diseases of the United States Animal Health Association (1998) Foreign animal diseases. USAHA, Carter Printing Co. Richmond, Virginia

    Google Scholar 

  23. Craig GB, Edman JD, Gwadz R, Michelson E, Washino RK (1983) Manpower needs and career opportunities in the field aspects of vector biology, report of a workshop. National Academy Press, pp 1–53

    Google Scholar 

  24. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94(7): 3274–3278

    Article  PubMed  CAS  Google Scholar 

  25. Edwards JF, Higgs S, Beaty B (1998) Mosquito feeding-induced potentiation of Cache Valley virus (Bunyaviridae) infection in mice. J Med Entomol 35: 261–265

    PubMed  CAS  Google Scholar 

  26. Fonseca DM, Campbell S, Crans WJ, Mogi M, Miyagi I, Toma T, Bullians M, Andreadis TG, Berry RL, Pagac B, Sardelis MR, Wilkerson RC (2001) Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol 38: 135–146

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004) Emerging vectors in the Culex pipiens complex. Science 303(5663): 1535–1538

    Article  PubMed  CAS  Google Scholar 

  28. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ (2001) Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of downregulation in response to blood feeding. Proc Natl Acad Sci USA 98: 14693–14697

    Article  PubMed  CAS  Google Scholar 

  29. Foy BD, Magalhaes T, Injera WE, Sutherland I, Devenport M, Thanawastien A, Ripley D, Cardenas-Freytag L, Beier JC (2003) Induction of mosquitocidal activity in mice immunized with Anopheles gambiae midgut cDNA. Infect Immun 71(4): 2032–2040

    Article  PubMed  CAS  Google Scholar 

  30. Foy BD, Myles KM, Pierro DJ, Sanchez-Vargas I, Uhlirova M, Jindra M, Beaty BJ, Olson KE (2004) Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 13(1): 89–100

    Article  PubMed  CAS  Google Scholar 

  31. Ghosh AK, Ribolla PE, Jacobs-Lorena M (2001) Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 98(23): 13278–13281

    Article  PubMed  CAS  Google Scholar 

  32. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, De Lourdes Munoz M, Farfan-Ale J, Beaty BJ, Black WC (2002) The breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66(2): 213–222

    PubMed  Google Scholar 

  33. Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 44: 51–75

    Article  CAS  Google Scholar 

  34. Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol (6): 597–604

    Article  Google Scholar 

  35. Gubler DJ (2002a) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33(4): 330–342

    Article  PubMed  Google Scholar 

  36. Gubler DJ (2002b) Epidemic dengue/dengue hemorrhagic fever as a public health, social, and economic problem in the 21st century. Trends Microbiol 10: 100–103

    Article  PubMed  CAS  Google Scholar 

  37. Hajnicka V, Kocakova P, Slovak M, Labuda M, Fuchsberger N, Nuttall PA (2000) Inhibition of the antiviral action of interferon by tick salivary gland extract. Parasite Immunol 22(4): 201–206

    Article  PubMed  CAS  Google Scholar 

  38. Hallem EA, Nicole Fox A, Zwiebel LJ, Carlson JR (2004) Olfaction: mosquito receptor for human-sweat odorant. Nature 427(6971): 212–213

    Article  PubMed  CAS  Google Scholar 

  39. Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60: 421–467

    Article  PubMed  CAS  Google Scholar 

  40. Hansen IA, Attardo GM, Park J, Peng Q, Raikhel AS (2004) TOR-mediated amino acid signaling in mosquito anautogeny. PNAS (in press)

    Google Scholar 

  41. Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298(5591): 96–97

    Article  PubMed  CAS  Google Scholar 

  42. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45: 371–391

    Article  CAS  Google Scholar 

  43. Higgs S, Olson K, Klimowski L, Powers AM, Carlson JO, Possee RD, Beaty BJ (1995) Mosquito sensitivity to a scorpion neurotoxin expressed using an infectious Sindbis virus vector. Insect Mol Biol 4: 97–103

    PubMed  CAS  Google Scholar 

  44. Higgs S, Rayner J, Olson K, Davis B, Beaty B, Blair C (1998) Engineered resistance in Aedes aegypti to a West African and South American strain of yellow fever virus. Am J Trop Med Hyg 58: 663–670

    PubMed  CAS  Google Scholar 

  45. Higgs S, Traul D, Davis B, Wilcox B, Beaty B (1996) Green fluorescent protein expressed in living mosquitoes without the requirement for transformation. Biotechniques 21: 660–664

    PubMed  CAS  Google Scholar 

  46. Hoa NT, Keene KM, Olson KE, Zheng L (2003) Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol 33(9): 949–957

    Article  PubMed  CAS  Google Scholar 

  47. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591): 129–149

    Article  PubMed  CAS  Google Scholar 

  48. Ito J-I, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417(6887): 452–455

    Article  PubMed  CAS  Google Scholar 

  49. Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95(7): 3743–3747

    Article  PubMed  CAS  Google Scholar 

  50. Johnson BW, Olson KE, Allen-Miura A, Rayms-Keller A, Carlson JO, Coates CJ, Jasinskien N, James AA, Beaty BJ, Higgs S (1999) Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc Natl Acad Sci 96: 13399–13403

    Article  PubMed  CAS  Google Scholar 

  51. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290(5495): 1351–1354

    Article  PubMed  CAS  Google Scholar 

  52. Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97(16): 9144–9149

    Article  PubMed  CAS  Google Scholar 

  53. Kokoza V, Ahmed A, Wimmer EA, Raikhel AS (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol 31(12): 1137–1143

    Article  PubMed  CAS  Google Scholar 

  54. Lai CJ, Monath TP (2003) Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res 61: 469–509

    PubMed  CAS  Google Scholar 

  55. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K et al. (1999) Origin of theWest Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 2333–2337

    Article  PubMed  CAS  Google Scholar 

  56. Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares Sda S, Braga IA, Ramos RP, Valle D (2003) Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil Am J Trop Med Hyg 68(3): 329–333

    CAS  Google Scholar 

  57. Limesand K, Higgs S, Pearson LD, Beaty BJ (2000) Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol 22: 461–467

    Article  PubMed  CAS  Google Scholar 

  58. Lounibos LP (2002) Invasions by insect vectors of human disease. Ann Rev Entomol 47: 233–266

    Article  CAS  Google Scholar 

  59. Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, Turkistani AM, Al-Sayed MO, Abodahish AA, Khan AS, Ksiazek TG, Shobokshi O (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37(8): 1084–1092

    Article  PubMed  Google Scholar 

  60. Meegan JM, Hoogstraal H, Moussa MI (1979) An epizootic of RiftValley fever in Egypt in 1977. Vet Rec 105(6): 124–125

    PubMed  CAS  Google Scholar 

  61. Merrill CE, Riesgo-Escovar J, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci 99(3): 1633–1638

    Article  PubMed  CAS  Google Scholar 

  62. Monath TP (2000) Yellow fever: an update. Lancet Infect Dis 1: 11–19

    Article  Google Scholar 

  63. Moore CG (1999) Aedes albopictus in the United States: current status and prospects for further spread. J Am Mosq Control Assoc 15: 221–227

    PubMed  CAS  Google Scholar 

  64. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol (9): 5226–5230

    Google Scholar 

  65. Nasci RS, White DJ, Stirling H, Oliver JA, Daniels TJ, Falco RC, Campbell S, Crans WJ, Savage HM, Lanciotti RS, Moore CG, Godsey MS, Gottfried KL, Mitchell CJ (2001) West Nile virus isolates from mosquitoes in New York and New Jersey, 1999. Emerg Infect Dis 7(4): 626–630

    PubMed  CAS  Google Scholar 

  66. Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11): 8759–8762

    Article  PubMed  CAS  Google Scholar 

  67. O’Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW (2003) Gene vector and transposable element behavior in mosquitoes. J Exp Biol 206 (Pt 21): 3823–3834

    Article  PubMed  CAS  Google Scholar 

  68. Olson K, Beaty B, Higgs S (1998) RNA virus expression vectors. In: Miller L, Ball A (eds) The viruses. Plenum Press, NewYork, pp 371–404

    Google Scholar 

  69. Olson K, Higgs S, Carlson J, Beaty B (1993) Expression of the bacterial CAT gene in mosquito cells and mosquitoes using a double promoter Sindbis virus vector. Insect Biochem Mol Biol 24: 39–48

    Article  Google Scholar 

  70. Olson K, Higgs S, Powers A, Davis B, Carlson J, Blair C, Beaty BJ (1996) Genetically engineered resistance in mosquitoes to dengue virus transmission. Science 272: 884–886

    PubMed  CAS  Google Scholar 

  71. Olson KE, Adelman ZN, Travanty EA, Sanchez-Vargas I, Beaty BJ, Blair CD (2002) Developing arbovirus resistance in mosquitoes. Insect Biochem Mol Biol 32(10): 1333–1343

    Article  PubMed  CAS  Google Scholar 

  72. Pierro DJ, Myles KM, Foy BD, Beaty BJ, Olson KE (2003) Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti. Insect Mol Biol 12(2): 107

    Article  PubMed  CAS  Google Scholar 

  73. Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci 101: 5058–5063

    Article  PubMed  CAS  Google Scholar 

  74. Powers AM, Kamrud KI, Olson KE, Higgs S, Carlson JO, Beaty BJ (1996) Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes. Proc Natl Acad Sci USA (9): 4187–4191

    Article  Google Scholar 

  75. Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N (1998) An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc Lond B Biol Sci 353: 1707–1711

    Article  PubMed  CAS  Google Scholar 

  76. Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9(1): 86–89

    PubMed  Google Scholar 

  77. Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M (2003) Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206 (Pt 21): 3809–3816

    Article  PubMed  Google Scholar 

  78. Roberts DR, Laughlin LL, Hsheih P, Legters LJ (1997) DDT, global strategies, and a malaria control crisis in South America. Emerg Infect Dis 3: 295–302

    Article  PubMed  CAS  Google Scholar 

  79. Roehrig JT, Layton M, Smith P, Campbell GL, Nasci R, Lanciotti RS (2002) The emergence of West Nile virus in North America: ecology, epidemiology, and surveillance. Curr Top Microbiol Immunol 267: 223–240

    PubMed  CAS  Google Scholar 

  80. Sanchez-Vargas I, Travanty EA, Keene KM, Franz AW, Beaty BJ, Blair CD, Olson KE (2004) RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102(1): 65–74

    Article  PubMed  CAS  Google Scholar 

  81. Severson DW, Brown SE, Knudson DL (2001) Genetic and physical mapping in mosquitoes: molecular approaches. Annu Rev Entomol 46: 183–219

    Article  PubMed  CAS  Google Scholar 

  82. Severson DW, DeBruyn B, Lovin DD, Brown SE, Knudson DL, Morlais I (2004) Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. J Hered 95(2): 103–113

    Article  PubMed  CAS  Google Scholar 

  83. Shiao SH, Higgs S, Adelman Z, Christensen BM, Liu SH, Chen CC (2001) Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol 10(4): 315–321

    Article  PubMed  CAS  Google Scholar 

  84. Shin SW, Kokoza V, Lobkov I, Raikhel AS (2003) Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(5): 2616–2621

    Article  PubMed  CAS  Google Scholar 

  85. Smolinski M, Hamburg A, Lederberg J (2003) In: Beaty B, Berkelman R, Burke D, Cassell G, Yong Kim J, Klugman K, Mahmoud A, Mearns L, Murphy F, Osterholm M, Peters C, Quinlisk P, Sparling F, Webster R, Wilson M, Wilson M (eds) (Committee on Microbial Threats to Health in the 21st Century). Emergence, detection, and response. Microbial threats to health. Institute of Medicine, NationalAcademies Press, Washington, DC

    Google Scholar 

  86. Spielman A (1994) A commentary on research needs for monitoring and containing emergent vector-borne infections. Disease in evolution: global changes and emergence of infectious diseases. Ann NY Acad Sci 740: 457–461

    Google Scholar 

  87. Titus RG, Ribeiro JM (1998) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239: 1306–1308

    Google Scholar 

  88. Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM (2002) Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205 (Pt 18): 2843–2864

    PubMed  CAS  Google Scholar 

  89. Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM (2002) Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 32(9): 1101–1122

    Article  PubMed  CAS  Google Scholar 

  90. Willadsen P (2001) The molecular revolution in the development of vaccines against ectoparasites. Vet Parasitol 22: 353–368

    Article  Google Scholar 

  91. Zhu J, Chen L, Raikhel AS (2003) Posttranscriptional control of the competence factor betaFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(23): 13338–13343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this paper

Cite this paper

Beaty, B.J. (2005). Control of arbovirus diseases: is the vector the weak link?. In: Peters, C.J., Calisher, C.H. (eds) Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence. Springer, Vienna. https://doi.org/10.1007/3-211-29981-5_7

Download citation

Publish with us

Policies and ethics