Control of arbovirus diseases: is the vector the weak link?

  • B. J. Beaty


Arthropod-borne virus (arbovirus) diseases (ABVDs) remain major threats to human health and well-being and, as an epidemiologic group, inflict an unacceptable health and economic burden on humans and animals, including livestock. The developed world has been fortunate to have escaped much of the burden that arboviruses and their arthropod vectors inflict on humans in disease endemic countries, but the introduction and rapid spread of West Nile virus in the Western Hemisphere demonstrated that we can no longer be complacent in the face of these emerging and resurging vector-borne diseases. Unfortunately, as the burdens and threats of ABVDs have increased, the U.S. and international public health capacity to address them has decreased. Vaccines are not available for most of these agents. Previously successful strategies to control ABVDs emphasized vector control, but source reduction and vector control strategies using pesticides have not been sustainable. New insights into vector biology and vector pathogen interactions, and the novel targets that likely will be forthcoming in the vector post-genomics era, provide new targets and opportunities for vector control and disease reduction programs. These findings and approaches must be incorporated into existing strategies if we are to control these important pathogens.


West Nile Virus Rift Valley Fever Sindbis Virus Mosquito Cell Yellow Fever Mosquito 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE (2001) Sindbis virus induced silencing of dengue viruses in mosquitoes. Insect Mol Bio 10: 265–273CrossRefGoogle Scholar
  2. 2.
    Adelman ZN, Sanchez-Vargas I, Travanty EA, Carlson JO, Beaty BJ, Blair CD, Olson KE (2002) RNA silencing of dengue-2 virus replication in transformed C6/36 mosquito cells transcribing an inverted repeat RNA derived from the virus genome. J Virol 76: 12925–12933PubMedCrossRefGoogle Scholar
  3. 3.
    Allen ML, O’Brochta DA, Atkinson PW, Levesque CS (2001) Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol (5): 701–710Google Scholar
  4. 4.
    Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH (2002) Malaria control with genetically manipulated insect vectors. Science 28(5591): 119–121CrossRefGoogle Scholar
  5. 5.
    Aspen S, Savage HM (2003) Polymerase chain reaction assay identifies North American members of the Culex pipiens complex based on nucleotide sequence differences in the acetylcholinesterase gene Ace.2. J Am Mosq Control Assoc (4): 323–238Google Scholar
  6. 6.
    Attaran A, Roberts DR, Curtis CF, Kilama WL (2000) Balancing risks on the backs of the poor. Nat Med 6(7): 729–731PubMedCrossRefGoogle Scholar
  7. 7.
    Attardo GM, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS (2003) RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(23): 13374–13379PubMedCrossRefGoogle Scholar
  8. 8.
    Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47: 123–141PubMedCrossRefGoogle Scholar
  9. 9.
    Beaty BJ (2000) Genetic manipulation of vectors: a potential novel approach for control of vector-borne diseases. Proc Natl Acad Sci USA 97: 10295–10297PubMedCrossRefGoogle Scholar
  10. 10.
    Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan JA, Higgs S, Black WC, Beaty BJ (2002) Variation in vector competence for dengue-2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 85–92PubMedGoogle Scholar
  11. 11.
    Black WC, Baer CF, Antolin MF, Du Teau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46: 441–469PubMedCrossRefGoogle Scholar
  12. 12.
    Black WC, Bennett KE, Gorrochotegui-Escalante N, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Olson KE, Beaty BJ (2002) Genetics of flavivirus susceptibility in Aedes aegypti. Arch Med Res 33(4): 379–388PubMedCrossRefGoogle Scholar
  13. 13.
    Bolshakov VN, Topalis P, Blass C, Kokoza E, della Torre A, Kafatos FC, Louis C (2002) A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae. Genome Res 12(1): 57–66PubMedCrossRefGoogle Scholar
  14. 14.
    Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black W (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698PubMedGoogle Scholar
  15. 15.
    Campos J, Andrade CF (2003) Larval susceptibility of Aedes aegypti and Culex quinquefasciatus populations to chemical insecticides. Rev Saude Publica 37(4): 523–527PubMedGoogle Scholar
  16. 16.
    Caplen NJ, Zheng Z, Falgout B, Morgan RA (2002) Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther 6(2): 243–251PubMedCrossRefGoogle Scholar
  17. 17.
    Carlson J, Higgs S, Olson K, Beaty B (1995) Molecular manipulation of mosquitoes. Ann Rev Entomol 40: 359–388CrossRefGoogle Scholar
  18. 18.
    Carter R (2001) Transmission-blocking malaria vaccines. Vaccine 19: 2309–2314PubMedCrossRefGoogle Scholar
  19. 19.
    Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789): 959–962PubMedCrossRefGoogle Scholar
  20. 20.
    Coates CJ, Jasinskiene N, Miyashiro L, James AA (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95: 3748–3751PubMedCrossRefGoogle Scholar
  21. 21.
    Collins FH, Kamau L, Ranson HA, Vulule JM (2000) Molecular entomology and prospects for malaria control. BullWorld Health Organ 78: 1412–1423Google Scholar
  22. 22.
    Committee on Foreign Animal Diseases of the United States Animal Health Association (1998) Foreign animal diseases. USAHA, Carter Printing Co. Richmond, VirginiaGoogle Scholar
  23. 23.
    Craig GB, Edman JD, Gwadz R, Michelson E, Washino RK (1983) Manpower needs and career opportunities in the field aspects of vector biology, report of a workshop. National Academy Press, pp 1–53Google Scholar
  24. 24.
    Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94(7): 3274–3278PubMedCrossRefGoogle Scholar
  25. 25.
    Edwards JF, Higgs S, Beaty B (1998) Mosquito feeding-induced potentiation of Cache Valley virus (Bunyaviridae) infection in mice. J Med Entomol 35: 261–265PubMedGoogle Scholar
  26. 26.
    Fonseca DM, Campbell S, Crans WJ, Mogi M, Miyagi I, Toma T, Bullians M, Andreadis TG, Berry RL, Pagac B, Sardelis MR, Wilkerson RC (2001) Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol 38: 135–146PubMedCrossRefGoogle Scholar
  27. 27.
    Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004) Emerging vectors in the Culex pipiens complex. Science 303(5663): 1535–1538PubMedCrossRefGoogle Scholar
  28. 28.
    Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ (2001) Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of downregulation in response to blood feeding. Proc Natl Acad Sci USA 98: 14693–14697PubMedCrossRefGoogle Scholar
  29. 29.
    Foy BD, Magalhaes T, Injera WE, Sutherland I, Devenport M, Thanawastien A, Ripley D, Cardenas-Freytag L, Beier JC (2003) Induction of mosquitocidal activity in mice immunized with Anopheles gambiae midgut cDNA. Infect Immun 71(4): 2032–2040PubMedCrossRefGoogle Scholar
  30. 30.
    Foy BD, Myles KM, Pierro DJ, Sanchez-Vargas I, Uhlirova M, Jindra M, Beaty BJ, Olson KE (2004) Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 13(1): 89–100PubMedCrossRefGoogle Scholar
  31. 31.
    Ghosh AK, Ribolla PE, Jacobs-Lorena M (2001) Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 98(23): 13278–13281PubMedCrossRefGoogle Scholar
  32. 32.
    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, De Lourdes Munoz M, Farfan-Ale J, Beaty BJ, Black WC (2002) The breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66(2): 213–222PubMedGoogle Scholar
  33. 33.
    Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 44: 51–75CrossRefGoogle Scholar
  34. 34.
    Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol (6): 597–604CrossRefGoogle Scholar
  35. 35.
    Gubler DJ (2002a) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33(4): 330–342PubMedCrossRefGoogle Scholar
  36. 36.
    Gubler DJ (2002b) Epidemic dengue/dengue hemorrhagic fever as a public health, social, and economic problem in the 21st century. Trends Microbiol 10: 100–103PubMedCrossRefGoogle Scholar
  37. 37.
    Hajnicka V, Kocakova P, Slovak M, Labuda M, Fuchsberger N, Nuttall PA (2000) Inhibition of the antiviral action of interferon by tick salivary gland extract. Parasite Immunol 22(4): 201–206PubMedCrossRefGoogle Scholar
  38. 38.
    Hallem EA, Nicole Fox A, Zwiebel LJ, Carlson JR (2004) Olfaction: mosquito receptor for human-sweat odorant. Nature 427(6971): 212–213PubMedCrossRefGoogle Scholar
  39. 39.
    Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60: 421–467PubMedCrossRefGoogle Scholar
  40. 40.
    Hansen IA, Attardo GM, Park J, Peng Q, Raikhel AS (2004) TOR-mediated amino acid signaling in mosquito anautogeny. PNAS (in press)Google Scholar
  41. 41.
    Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298(5591): 96–97PubMedCrossRefGoogle Scholar
  42. 42.
    Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45: 371–391CrossRefGoogle Scholar
  43. 43.
    Higgs S, Olson K, Klimowski L, Powers AM, Carlson JO, Possee RD, Beaty BJ (1995) Mosquito sensitivity to a scorpion neurotoxin expressed using an infectious Sindbis virus vector. Insect Mol Biol 4: 97–103PubMedGoogle Scholar
  44. 44.
    Higgs S, Rayner J, Olson K, Davis B, Beaty B, Blair C (1998) Engineered resistance in Aedes aegypti to a West African and South American strain of yellow fever virus. Am J Trop Med Hyg 58: 663–670PubMedGoogle Scholar
  45. 45.
    Higgs S, Traul D, Davis B, Wilcox B, Beaty B (1996) Green fluorescent protein expressed in living mosquitoes without the requirement for transformation. Biotechniques 21: 660–664PubMedGoogle Scholar
  46. 46.
    Hoa NT, Keene KM, Olson KE, Zheng L (2003) Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol 33(9): 949–957PubMedCrossRefGoogle Scholar
  47. 47.
    Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591): 129–149PubMedCrossRefGoogle Scholar
  48. 48.
    Ito J-I, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417(6887): 452–455PubMedCrossRefGoogle Scholar
  49. 49.
    Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95(7): 3743–3747PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson BW, Olson KE, Allen-Miura A, Rayms-Keller A, Carlson JO, Coates CJ, Jasinskien N, James AA, Beaty BJ, Higgs S (1999) Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc Natl Acad Sci 96: 13399–13403PubMedCrossRefGoogle Scholar
  51. 51.
    Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290(5495): 1351–1354PubMedCrossRefGoogle Scholar
  52. 52.
    Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97(16): 9144–9149PubMedCrossRefGoogle Scholar
  53. 53.
    Kokoza V, Ahmed A, Wimmer EA, Raikhel AS (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol 31(12): 1137–1143PubMedCrossRefGoogle Scholar
  54. 54.
    Lai CJ, Monath TP (2003) Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res 61: 469–509PubMedGoogle Scholar
  55. 55.
    Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K et al. (1999) Origin of theWest Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 2333–2337PubMedCrossRefGoogle Scholar
  56. 56.
    Lima JB, Da-Cunha MP, Da Silva RC, Galardo AK, Soares Sda S, Braga IA, Ramos RP, Valle D (2003) Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espirito Santo, Brazil Am J Trop Med Hyg 68(3): 329–333Google Scholar
  57. 57.
    Limesand K, Higgs S, Pearson LD, Beaty BJ (2000) Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol 22: 461–467PubMedCrossRefGoogle Scholar
  58. 58.
    Lounibos LP (2002) Invasions by insect vectors of human disease. Ann Rev Entomol 47: 233–266CrossRefGoogle Scholar
  59. 59.
    Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, Turkistani AM, Al-Sayed MO, Abodahish AA, Khan AS, Ksiazek TG, Shobokshi O (2003) Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 37(8): 1084–1092PubMedCrossRefGoogle Scholar
  60. 60.
    Meegan JM, Hoogstraal H, Moussa MI (1979) An epizootic of RiftValley fever in Egypt in 1977. Vet Rec 105(6): 124–125PubMedGoogle Scholar
  61. 61.
    Merrill CE, Riesgo-Escovar J, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci 99(3): 1633–1638PubMedCrossRefGoogle Scholar
  62. 62.
    Monath TP (2000) Yellow fever: an update. Lancet Infect Dis 1: 11–19CrossRefGoogle Scholar
  63. 63.
    Moore CG (1999) Aedes albopictus in the United States: current status and prospects for further spread. J Am Mosq Control Assoc 15: 221–227PubMedGoogle Scholar
  64. 64.
    Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol (9): 5226–5230Google Scholar
  65. 65.
    Nasci RS, White DJ, Stirling H, Oliver JA, Daniels TJ, Falco RC, Campbell S, Crans WJ, Savage HM, Lanciotti RS, Moore CG, Godsey MS, Gottfried KL, Mitchell CJ (2001) West Nile virus isolates from mosquitoes in New York and New Jersey, 1999. Emerg Infect Dis 7(4): 626–630PubMedGoogle Scholar
  66. 66.
    Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11): 8759–8762PubMedCrossRefGoogle Scholar
  67. 67.
    O’Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW (2003) Gene vector and transposable element behavior in mosquitoes. J Exp Biol 206 (Pt 21): 3823–3834PubMedCrossRefGoogle Scholar
  68. 68.
    Olson K, Beaty B, Higgs S (1998) RNA virus expression vectors. In: Miller L, Ball A (eds) The viruses. Plenum Press, NewYork, pp 371–404Google Scholar
  69. 69.
    Olson K, Higgs S, Carlson J, Beaty B (1993) Expression of the bacterial CAT gene in mosquito cells and mosquitoes using a double promoter Sindbis virus vector. Insect Biochem Mol Biol 24: 39–48CrossRefGoogle Scholar
  70. 70.
    Olson K, Higgs S, Powers A, Davis B, Carlson J, Blair C, Beaty BJ (1996) Genetically engineered resistance in mosquitoes to dengue virus transmission. Science 272: 884–886PubMedGoogle Scholar
  71. 71.
    Olson KE, Adelman ZN, Travanty EA, Sanchez-Vargas I, Beaty BJ, Blair CD (2002) Developing arbovirus resistance in mosquitoes. Insect Biochem Mol Biol 32(10): 1333–1343PubMedCrossRefGoogle Scholar
  72. 72.
    Pierro DJ, Myles KM, Foy BD, Beaty BJ, Olson KE (2003) Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti. Insect Mol Biol 12(2): 107PubMedCrossRefGoogle Scholar
  73. 73.
    Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci 101: 5058–5063PubMedCrossRefGoogle Scholar
  74. 74.
    Powers AM, Kamrud KI, Olson KE, Higgs S, Carlson JO, Beaty BJ (1996) Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes. Proc Natl Acad Sci USA (9): 4187–4191CrossRefGoogle Scholar
  75. 75.
    Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N (1998) An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc Lond B Biol Sci 353: 1707–1711PubMedCrossRefGoogle Scholar
  76. 76.
    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9(1): 86–89PubMedGoogle Scholar
  77. 77.
    Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M (2003) Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206 (Pt 21): 3809–3816PubMedCrossRefGoogle Scholar
  78. 78.
    Roberts DR, Laughlin LL, Hsheih P, Legters LJ (1997) DDT, global strategies, and a malaria control crisis in South America. Emerg Infect Dis 3: 295–302PubMedCrossRefGoogle Scholar
  79. 79.
    Roehrig JT, Layton M, Smith P, Campbell GL, Nasci R, Lanciotti RS (2002) The emergence of West Nile virus in North America: ecology, epidemiology, and surveillance. Curr Top Microbiol Immunol 267: 223–240PubMedGoogle Scholar
  80. 80.
    Sanchez-Vargas I, Travanty EA, Keene KM, Franz AW, Beaty BJ, Blair CD, Olson KE (2004) RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102(1): 65–74PubMedCrossRefGoogle Scholar
  81. 81.
    Severson DW, Brown SE, Knudson DL (2001) Genetic and physical mapping in mosquitoes: molecular approaches. Annu Rev Entomol 46: 183–219PubMedCrossRefGoogle Scholar
  82. 82.
    Severson DW, DeBruyn B, Lovin DD, Brown SE, Knudson DL, Morlais I (2004) Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. J Hered 95(2): 103–113PubMedCrossRefGoogle Scholar
  83. 83.
    Shiao SH, Higgs S, Adelman Z, Christensen BM, Liu SH, Chen CC (2001) Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol 10(4): 315–321PubMedCrossRefGoogle Scholar
  84. 84.
    Shin SW, Kokoza V, Lobkov I, Raikhel AS (2003) Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(5): 2616–2621PubMedCrossRefGoogle Scholar
  85. 85.
    Smolinski M, Hamburg A, Lederberg J (2003) In: Beaty B, Berkelman R, Burke D, Cassell G, Yong Kim J, Klugman K, Mahmoud A, Mearns L, Murphy F, Osterholm M, Peters C, Quinlisk P, Sparling F, Webster R, Wilson M, Wilson M (eds) (Committee on Microbial Threats to Health in the 21st Century). Emergence, detection, and response. Microbial threats to health. Institute of Medicine, NationalAcademies Press, Washington, DCGoogle Scholar
  86. 86.
    Spielman A (1994) A commentary on research needs for monitoring and containing emergent vector-borne infections. Disease in evolution: global changes and emergence of infectious diseases. Ann NY Acad Sci 740: 457–461Google Scholar
  87. 87.
    Titus RG, Ribeiro JM (1998) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239: 1306–1308Google Scholar
  88. 88.
    Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM (2002) Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205 (Pt 18): 2843–2864PubMedGoogle Scholar
  89. 89.
    Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM (2002) Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 32(9): 1101–1122PubMedCrossRefGoogle Scholar
  90. 90.
    Willadsen P (2001) The molecular revolution in the development of vaccines against ectoparasites. Vet Parasitol 22: 353–368CrossRefGoogle Scholar
  91. 91.
    Zhu J, Chen L, Raikhel AS (2003) Posttranscriptional control of the competence factor betaFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100(23): 13338–13343PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • B. J. Beaty
    • 1
  1. 1.Department of Microbiology, Immunology, and Pathology, Arthropod-Borne and Infectious Diseases Laboratory, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColorado

Personalised recommendations