Advertisement

Population dynamics of RNA viruses: the essential contribution of mutant spectra

  • E. Domingo
  • C. Gonzalez-Lopez
  • N. Pariente
  • A. Airaksinen
  • C. Escarmís
Conference paper

Summary

Cells and their viral and cellular parasites are genetically highly diverse, and their genomes contain signs of past and present variation and mobility. The great adaptive potential of viruses, conferred on them by high mutation rates and quasispecies dynamics, demands new strategies for viral disease prevention and control. This necessitates a more detailed knowledge of viral population structure and dynamics. Here we review studies with the important animal pathogen Foot-and-mouth disease virus (FMDV) that document modulating effects of the mutant spectra that compose viral populations. As a consequence of interactions within mutant spectra, enhanced mutagenesis may lead to viral extinction, and this is currently investigated as a new antiviral strategy, termed virus entry into error catastrophe.

Keywords

Mutagenic Agent Viral Population Mutant Spectrum Error Threshold Antiviral Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agol VI (2002) Picornavirus genetics: an overview. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. American Society for Microbiology, Washington DC, pp 269–284Google Scholar
  2. 2.
    Airaksinen A, Pariente N, Menendez-Arias L, Domingo E (2003) Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 311: 339–349PubMedCrossRefGoogle Scholar
  3. 3.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York, NYGoogle Scholar
  4. 4.
    Alves D, Fontanari JF (1998) Error threshold in finite populations. Phys Rev E 57: 7008–7013CrossRefGoogle Scholar
  5. 5.
    Arias A, Lázaro E, Escarmís C, Domingo E (2001) Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82: 1049–1060PubMedGoogle Scholar
  6. 6.
    Arias A, Ruiz-Jarabo CM, Escarmis C, Domingo E (2004) Fitness increase of memory genomes in a viral quasispecies. J Mol Biol 339: 405–412PubMedCrossRefGoogle Scholar
  7. 7.
    Baranowski E, Ruíz-Jarabo CM, Pariente N, Verdaguer N, Domingo E (2003) Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 62: 19–111PubMedCrossRefGoogle Scholar
  8. 8.
    Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1: 27–32PubMedCrossRefGoogle Scholar
  9. 9.
    Borrego B, Novella IS, Giralt E, Andreu D, Domingo E (1993) Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J Virol 67: 6071–6079PubMedGoogle Scholar
  10. 10.
    Bushman F (2002) Lateral DNA transfer. Mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  11. 11.
    Chao L (1990) Fitness of RNA virus decreased by Muller’s ratchet. Nature 348: 454–455PubMedCrossRefGoogle Scholar
  12. 12.
    Chumakov KM, Powers LB, Noonan KE, Roninson IB, Levenbook IS (1991) Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc Natl Acad Sci USA 88: 199–203PubMedCrossRefGoogle Scholar
  13. 13.
    Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  14. 14.
    Condit RC (2001) Principles of Virology. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, vol 1, pp 19–51Google Scholar
  15. 15.
    Contreras AM, Hiasa Y, He W, Terella A, Schmidt EV, Chung RT (2002) Viral RNA mutations are region specific and increased by ribavirin in a full-length hepatitis C virus replication system. J Virol 76: 8505–8517PubMedCrossRefGoogle Scholar
  16. 16.
    Crotty S, Maag D, Arnold JJ, Zhong W, Lau JYN, Hong Z, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleotide, ribavirin, is an RNA virus mutagen. Nat Med 6: 1375–1379PubMedCrossRefGoogle Scholar
  17. 17.
    Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 98: 6895–6900PubMedCrossRefGoogle Scholar
  18. 18.
    Crotty S, Cameron C, Andino R (2002) Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med 80: 86–95PubMedCrossRefGoogle Scholar
  19. 19.
    de la Torre JC, Alarcón B, Martínez-Salas E, Carrasco L, Domingo E (1987) Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. J Virol 61: 233–235PubMedGoogle Scholar
  20. 20.
    de la Torre JC, Holland JJ (1990) RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64: 6278–6281PubMedGoogle Scholar
  21. 21.
    de Visser JA (2002) The fate of microbial mutators. Microbiology 148: 1247–1252PubMedGoogle Scholar
  22. 22.
    Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13: 735–744PubMedCrossRefGoogle Scholar
  23. 23.
    Domingo E (1989) RNA virus evolution and the control of viral disease. Prog Drug Res 33: 93–133PubMedGoogle Scholar
  24. 24.
    Domingo E, Biebricher C, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, AustinGoogle Scholar
  25. 25.
    Domingo E (2003) Quasispecies and the development of new antiviral strategies. Prog Drug Res 60: 133–158PubMedGoogle Scholar
  26. 26.
    Domingo E (2005) Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107: 115–228CrossRefGoogle Scholar
  27. 27.
    Domingo E (2005) Viruses as quasispecies: biological implications. Current Topics in Microbiology and Immunology (in press)Google Scholar
  28. 28.
    Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96: 13910–13913PubMedCrossRefGoogle Scholar
  29. 29.
    Duarte E, Clarke D, Moya A, Domingo E, Holland J (1992) Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc Natl Acad Sci USA 89: 6015–6019PubMedCrossRefGoogle Scholar
  30. 30.
    Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465–523PubMedCrossRefGoogle Scholar
  31. 31.
    Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  32. 32.
    Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Ahlquist P, Holland JJ (eds) RNA Genetics. CRC Press, Boca Raton, FL, vol 3, pp 211–245Google Scholar
  33. 33.
    Eigen M (1996) On the nature of virus quasispecies. Trends Microbiol 4: 216–218PubMedCrossRefGoogle Scholar
  34. 34.
    Eigen M (2000) Natural selection: a phase transition? Biophys Chem 85: 101–123PubMedCrossRefGoogle Scholar
  35. 35.
    Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99: 13374–13376PubMedCrossRefGoogle Scholar
  36. 36.
    Escarmís C, Dávila M, Charpentier N, Bracho A, Moya A, Domingo E (1996) Genetic lesions associated with Muller’s ratchet in an RNA virus. J Mol Biol 264: 255–267PubMedCrossRefGoogle Scholar
  37. 37.
    Escarmís C, Dávila M, Domingo E (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet. J Mol Biol 285: 495–505PubMedCrossRefGoogle Scholar
  38. 38.
    Escarmís C, Gómez-Mariano G, Dávila M, Lázaro E, Domingo E (2002) Resistance to extinction of low fitness virus subjected to plaque-to-plaque transfers: diversification by mutation clustering. J Mol Biol 315: 647–661PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279: 47212–47221PubMedCrossRefGoogle Scholar
  40. 40.
    Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2004) Principles of virology. Molecular biology, pathogenesis, and control of animal viruses, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  41. 41.
    García-Arriaza J, Domingo E, Escarmís C (2005) A segmented form of foot-and-mouth disease virus interferes with standard virus: a link between interference and competitive fitness. Virology 335: 155–164PubMedCrossRefGoogle Scholar
  42. 42.
    Giraud A, Matic I, Radman M, Fons M, Taddei F (2002) Mutator bacteria as a risk factor in treatment of infectious diseases. Antimicrob Agents Chemother 46: 863–865PubMedCrossRefGoogle Scholar
  43. 43.
    González-López C, Arias A, Pariente N, Gómez-Mariano G, Domingo E (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78: 3319–3324PubMedCrossRefGoogle Scholar
  44. 43a.
    González-López C, Gómez-Mariano G, Escarmís C, Domingo E (2005) Invariant aphthovirus consensus nucleotide sequence in the transition to error catastrophe. Infection, Geneticas and Evolution (in press)Google Scholar
  45. 44.
    Graci JD, Cameron CE (2002) Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 298: 175–180PubMedCrossRefGoogle Scholar
  46. 45.
    Grande-Pérez A, Sierra S, Castro MG, Domingo E, Lowenstein PR (2002) Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci USA 99: 12938–12943PubMedCrossRefGoogle Scholar
  47. 46.
    Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64: 3960–3962PubMedGoogle Scholar
  48. 47.
    Lanford RE, Chavez D, Guerra B, Lau JY, Hong Z, Brasky KM, Beames B (2001) Ribavirin induces error-prone replication of GB virus B in primary tamarin hepatocytes. J Virol 75: 8074–8081PubMedCrossRefGoogle Scholar
  49. 48.
    Lazaro E, Escarmis C, Perez-Mercader J, Manrubia SC, Domingo E (2003) Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc Natl Acad Sci USA 100: 10830–10835PubMedCrossRefGoogle Scholar
  50. 49.
    Lázaro E, Escarmís C, Domingo E, Manrubia SC (2002) Modeling viral genome fitness evolution associated with serial bottleneck events: evidence of stationary states of fitness. J Virol 76: 8675–8681PubMedCrossRefGoogle Scholar
  51. 50.
    Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc Natl Acad Sci USA 96: 1492–1497PubMedCrossRefGoogle Scholar
  52. 51.
    Loeb LA, Mullins JI (2000) Lethal mutagenesis of HIV by mutagenic ribonucleoside analogs. AIDS Res Hum Retroviruses 13: 1–3CrossRefGoogle Scholar
  53. 52.
    Maag D, Castro C, Hong Z, Cameron CE (2001) Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J Biol Chem 276: 46094–46098PubMedCrossRefGoogle Scholar
  54. 53.
    McClure MA (1999) The retroid agents: disease, function and evolution. In: Domingo E, Webster RG, Holland JJ (eds) Origin and evolution of viruses. Academic Press, San Diego, pp 163–195Google Scholar
  55. 54.
    Menéndez-Arias L (2002) Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol Sci 23: 381–388PubMedCrossRefGoogle Scholar
  56. 55.
    Mount DW(2004) Bioinformatics. Sequence and genome analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  57. 56.
    Muller HJ (1964) The relation of recombination to mutational advance. Mut Res 1: 2–9Google Scholar
  58. 57.
    Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137: 375–395PubMedGoogle Scholar
  59. 58.
    Page KM, Nowak MA (2002) Unifying evolutionary dynamics. J Theor Biol 219: 93–98PubMedGoogle Scholar
  60. 59.
    Pariente N, Sierra S, Lowenstein PR, Domingo E (2001) Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol 75: 9723–9730PubMedCrossRefGoogle Scholar
  61. 60.
    Pariente N, Airaksinen A, Domingo E (2003) Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol 77: 7131–7138PubMedCrossRefGoogle Scholar
  62. 61.
    Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100: 7289–7294PubMedCrossRefGoogle Scholar
  63. 62.
    Richman DD (1996) Antiviral drug resistance. JohnWiley and Sons Inc., New YorkGoogle Scholar
  64. 63.
    Rowlands DJ (ed) (2003) Foot-and-mouth disease. Virus Res 91: 1–161Google Scholar
  65. 63a.
    Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308: 37–47PubMedCrossRefGoogle Scholar
  66. 64.
    Severson WE, Schmaljohn CS, Javadian A, Jonsson CB (2003) Ribavirin causes error catastrophe during Hantaan virus replication. J Virol 77: 481–488PubMedCrossRefGoogle Scholar
  67. 65.
    Sierra S, Dávila M, Lowenstein PR, Domingo E (2000) Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J Virol 74: 8316–8323PubMedCrossRefGoogle Scholar
  68. 66.
    Sierra S (2001) Caracterización de la respuesta del virus de la fiebre aftosa a mutagénesis química. Universidad Autónoma de Madrid, Madrid, SpainGoogle Scholar
  69. 67.
    Snell NJ (2001) Ribavirin-current status of a broad spectrum antiviral agent. Expert Opin Pharmacother 2: 1317–1324PubMedCrossRefGoogle Scholar
  70. 68.
    Sobrino F, Domingo E (2004) Foot-and-mouth disease: current perspectives. Horizon Bioscience, Wymondham, EnglandGoogle Scholar
  71. 69.
    Streeter DG, Witkowski JT, Khare GP, Sidwell RW, Bauer RJ, Robins RK, Simon LN (1973) Mechanism of action of 1-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci USA 70:1174–1178PubMedCrossRefGoogle Scholar
  72. 70.
    Sun C, Skaletsky H, Rozen S, Gromoll J, Nieschlag E, Oates R, Page DC (2000) Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 9: 2291–2296PubMedCrossRefGoogle Scholar
  73. 71.
    Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16: 329–345PubMedCrossRefGoogle Scholar
  74. 72.
    Teng MN, Oldstone MB, de la Torre JC (1996) Suppression of lymphocytic choriomeningitis virus-induced growth hormone deficiency syndrome by diseasenegative virus variants. Virology 223: 113–119PubMedCrossRefGoogle Scholar
  75. 73.
    Vo NV, Young KC, Lai MMC (2003) Mutagenic and inhibitory effects of ribavirin on hepatitis C virus RNA polymerase. Biochemistry 42: 10462–10471PubMedCrossRefGoogle Scholar
  76. 74.
    Wilke CO, Ronnewinkel C, Martinetz T (2001) Dynamic fitness landscapes in molecular evolution. Phys Rep 349: 395–446CrossRefGoogle Scholar
  77. 75.
    Young KC, Lindsay KL, Lee KJ, Liu WC, He JW, Milstein SL, Lai MM (2003) Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 38: 869–878PubMedCrossRefGoogle Scholar
  78. 76.
    Youngner JS, Whitaker-Dowling P (1999) Interference. In: Granoff A, Webster RG (eds) Encyclopedia of virology. Academic Press, San Diego, California, vol 2, pp 850–854Google Scholar
  79. 77.
    Yuste E, Sánchez-Palomino S, Casado C, Domingo E, López-Galíndez C (1999) Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J Virol 73: 2745–2751PubMedGoogle Scholar
  80. 78.
    Yuste E, López-Galíndez C, Domingo E (2000) Unusual distribution of mutations associated with serial bottleneck passages of human immunodeficiency virus type 1. J Virol 74: 9546–9552PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • E. Domingo
    • 1
    • 2
  • C. Gonzalez-Lopez
    • 1
  • N. Pariente
    • 1
  • A. Airaksinen
    • 1
  • C. Escarmís
    • 1
  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM)Universidad Autónoma de MadridCantoblanco, MadridSpain
  2. 2.Centro de Investigación en Sanidad Animal (CISA-INIA)Universidad Autónoma de MadridCantoblanco, MadridSpain

Personalised recommendations