Advertisement

Species barriers in prion diseases — brief review

  • R. -A. Moore
  • I. Vorberg
  • S. -A. Priola1

Summary

Transmissible spongiform encephalopathies (TSEs or prion diseases) are neurological disorders associated with the aggregation of a pathologic isoform of a host-encoded protein, termed prion protein (PrP). The pathologic isoform of PrP, termed PrPSc, is a major constituent of the infectious agent. TSE diseases are characterized by neurodegenerative failure and inevitable morbidity. Bovine spongiform encephalopathy (BSE) has been transmitted from cattle to humans to cause a new variant of Creutzfeldt-Jakob syndrome. The potential for chronic wasting disease to similarly cross the species barrier from cervids to humans is considered unlikely but possible. Thus, understanding how TSE agents overcome resistance to transmission between species is crucial if we are to prevent future epidemics. The species barrier usually can be abrogated to varying degrees in laboratory animals. Studies done with transgenic animals, tissue culture, and cell-free assays established PrP as being necessary for TSE pathogenesis and illustrated that certain amino acid residues are more influential than others for conferring resistance to TSE agent transmission. The essence of what constitutes a TSE agent’s species compatibility is thought to be orchestrated by a complex interplay of contributions from its primary amino acid sequence, its glycoform patterns, and its three-dimensional structure.

Keywords

Prion Protein Prion Disease Bovine Spongiform Encephalopathy Primary Amino Acid Sequence Chronic Wasting Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116: 313–327PubMedCrossRefGoogle Scholar
  2. 2.
    Barron RM, Thomson V, Jamieson E, Melton DW, Ironside J, Will R, Manson JC (2001) Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J 20: 5070–5078PubMedCrossRefGoogle Scholar
  3. 3.
    Billeter M, Riek R, Wider G, Hornemann S, Glockshuber R, Wuthrich K (1997) Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 94: 7281–7285PubMedCrossRefGoogle Scholar
  4. 4.
    Bossers A, Belt PBGM, Raymond GJ, Caughey B, de V R, Smits MA (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci USA 94: 4931–4936PubMedCrossRefGoogle Scholar
  5. 5.
    Brown P, Rau EH, Johnson BK, Bacote AE, Gibbs CJ Jr, Gajdusek DC (2000) New studies on the heat resistance of hamster-adapted scrapie agent: threshold survival after ashing at 600 °C suggests an inorganic template of replication. Proc Natl Acad Sci USA 97: 3418–3421PubMedCrossRefGoogle Scholar
  6. 6.
    Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389: 498–501PubMedCrossRefGoogle Scholar
  7. 7.
    Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347PubMedCrossRefGoogle Scholar
  8. 8.
    Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577–582PubMedCrossRefGoogle Scholar
  9. 9.
    Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, DeArmond S, Westaway D, Prusiner SB (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46: 503–511PubMedCrossRefGoogle Scholar
  10. 10.
    Caughey B, Horiuchi M, Demaimay R, Raymond GJ (1999) Assays of protease-resistant prion protein and its formation. Methods Enzymol 309: 122–133PubMedGoogle Scholar
  11. 11.
    Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30: 7672–7680PubMedCrossRefGoogle Scholar
  12. 12.
    Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66: 1–20PubMedCrossRefGoogle Scholar
  13. 13.
    Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383: 685–690PubMedCrossRefGoogle Scholar
  14. 14.
    Collins SJ, Lawson VA, Masters CL (2004) Transmissible spongiform encephalopathies. Lancet 363: 51–61PubMedCrossRefGoogle Scholar
  15. 15.
    Detwiler LA, Baylis M (2003) The epidemiology of scrapie. Rev Sci Tech 22: 121–143PubMedGoogle Scholar
  16. 16.
    Dickinson AG, Meikle VM, Fraser H (1968) Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J Comp Pathol 78: 293–299PubMedCrossRefGoogle Scholar
  17. 17.
    Drogemuller C, de V F, Hamann H, Leeb T, Distl O (2004) Breeding German sheep for resistance to scrapie. Vet Rec 154: 257–260PubMedGoogle Scholar
  18. 18.
    Endo T, Groth D, Prusiner SB, Kobata A (1989) Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28: 8380–8388PubMedCrossRefGoogle Scholar
  19. 19.
    Gajdusek C (1967) Discussion on kuru, scrapie and the experimental kuru-like syndrome in chimpanzees. Curr Top Microbiol Immunol 40: 59–63PubMedGoogle Scholar
  20. 20.
    Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794–796PubMedGoogle Scholar
  21. 21.
    Gambetti P, Parchi P (1999) Insomnia in prion diseases: sporadic and familial. N Engl J Med 340: 1675–1677PubMedCrossRefGoogle Scholar
  22. 22.
    Gambetti P, Parchi P, Chen SG (2003) Hereditary Creutzfeldt-Jakob disease and fatal familial insomnia. Clin Lab Med 23: 43–64PubMedCrossRefGoogle Scholar
  23. 23.
    Gibbs CJ Jr, Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161: 388–389PubMedGoogle Scholar
  24. 24.
    Gibbs CJ Jr, Gajdusek DC (1973) Experimental subacute spongiform virus encephalopathies in primates and other laboratory animals. Science 182: 67–68PubMedGoogle Scholar
  25. 25.
    Goldmann W, Martin T, Foster J, Hughes S, Smith G, Hughes K, Dawson M, Hunter N (1996) Novel polymorphisms in the caprine PrP gene: a codon 142 mutation associated with scrapie incubation period. J Gen Virol 77 (Pt 11): 2885–2891PubMedGoogle Scholar
  26. 26.
    Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043–1044PubMedGoogle Scholar
  27. 27.
    Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J (2000) Species-barrier-independent prion replication in apparently resistant species. Proc Natl Acad Sci USA 97: 10248–10253PubMedCrossRefGoogle Scholar
  28. 28.
    Hope J, Morton LJ, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH (1986) The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J 5: 2591–2597PubMedGoogle Scholar
  29. 29.
    Horiuchi M, Priola SA, Chabry J, Caughey B (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci USA 97: 5836–5841PubMedCrossRefGoogle Scholar
  30. 30.
    Hourrigan J, Klingsporn A, Clark WW, de C M (1979) Epidemiology of scrapie in the United States. In: Prusiner SB, Hadlow WJ (eds) slow transmissible diseases of the nervous system. clinical, epidemiological, genetic, and pathological aspects of the spongiform encephalopathies, vol 1, pp 331–356Google Scholar
  31. 31.
    Houston F, Goldmann W, Chong A, Jeffrey M, Gonzalez L, Foster J, Parnham D, Hunter N (2003) Prion diseases: BSE in sheep bred for resistance to infection. Nature 423: 498PubMedCrossRefGoogle Scholar
  32. 32.
    Hunter N (2003) Scrapie and experimental BSE in sheep. Br Med Bull 66: 171–183PubMedCrossRefGoogle Scholar
  33. 33.
    Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73: 1055–1058PubMedCrossRefGoogle Scholar
  34. 34.
    Kimberlin RH, Marsh RF (1975) Comparison of scrapie and transmissible mink encephalopathy in hamsters. I. Biochemical studies of brain during development of disease. J Infect Dis 131: 97–103PubMedGoogle Scholar
  35. 35.
    Kimberlin RH, Walker CA (1978) Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol 39: 487–496PubMedCrossRefGoogle Scholar
  36. 36.
    Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8: 770–774PubMedCrossRefGoogle Scholar
  37. 37.
    Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370: 471–474PubMedCrossRefGoogle Scholar
  38. 38.
    Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr, Caughey B (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92: 3923–3927PubMedCrossRefGoogle Scholar
  39. 39.
    Lasmezas CI (2003) Putative functions of PrP(C). Br Med Bull 66: 61–70PubMedCrossRefGoogle Scholar
  40. 40.
    Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, Will RG (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363: 417–421PubMedCrossRefGoogle Scholar
  41. 41.
    Locht C, Chesebro B, Race R, Keith JM (1986) Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci USA 83: 6372–6376PubMedCrossRefGoogle Scholar
  42. 42.
    Marsh RF, Hadlow WJ (1992) Transmissible mink encephalopathy. Rev Sci Tech 11: 539–550PubMedGoogle Scholar
  43. 43.
    Marsh RF, Kimberlin RH (1975) Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology, and pathogenesis. J Infect Dis 131: 104–110PubMedGoogle Scholar
  44. 44.
    Moore RC, Hope J, McBride PA, McConnell I, Selfridge J, Melton DW, Manson JC (1998) Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat Genet 18: 118–125PubMedCrossRefGoogle Scholar
  45. 45.
    O’Rourke KI, Holyoak GR, Clark WW, Mickelson JR, Wang S, Melco RP, Besser TE, Foote WC (1997) PrP genotypes and experimental scrapie in orally inoculated Suffolk sheep in the United States. J Gen Virol 78 (Pt 4): 975–978PubMedGoogle Scholar
  46. 46.
    Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40: 735–746PubMedCrossRefGoogle Scholar
  47. 47.
    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90: 10962–10966PubMedCrossRefGoogle Scholar
  48. 48.
    Pattison IH (1966) The relative susceptibility of sheep, goats and mice to two types of the goat scrapie agent. Res Vet Sci 7: 207–212PubMedGoogle Scholar
  49. 49.
    Priola SA, Caughey B, Race RE, Chesebro B (1994) Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J Virol 68: 4873–4878PubMedGoogle Scholar
  50. 50.
    Priola SA, Chabry J, Chan K (2001) Efficient conversion of normal prion protein (PrP) by abnormal hamster PrP is determined by homology at amino acid residue 155. J Virol 75: 4673–4680PubMedCrossRefGoogle Scholar
  51. 51.
    Priola SA, Chesebro B (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol 69: 7754–7758PubMedGoogle Scholar
  52. 52.
    Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20: 6692–6699PubMedCrossRefGoogle Scholar
  53. 53.
    Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278: 245–251PubMedCrossRefGoogle Scholar
  54. 54.
    Prusiner SB (1998) The prion diseases. Brain Pathol 8: 499–513PubMedCrossRefGoogle Scholar
  55. 55.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144PubMedGoogle Scholar
  56. 56.
    Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, Torchia M, Yang SL, Serban D, Carlson GA (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673–686PubMedCrossRefGoogle Scholar
  57. 57.
    Race R, Chesebro B (1998) Scrapie infectivity found in resistant species. Nature 392: 770PubMedCrossRefGoogle Scholar
  58. 58.
    Race RE, Caughey B, Graham K, Ernst D, Chesebro B (1988) Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J Virol 62: 2845–2849PubMedGoogle Scholar
  59. 59.
    Richardson EP Jr, Masters CL (1995) The nosology of Creutzfeldt-Jakob disease and conditions related to the accumulation of PrPCJD in the nervous system. Brain Pathol 5: 33–41PubMedGoogle Scholar
  60. 60.
    Sailer A, Bueler H, Fischer M, Aguzzi A, Weissmann C (1994) No propagation of prions in mice devoid of PrP. Cell 77: 967–968PubMedCrossRefGoogle Scholar
  61. 61.
    Salman MD (2003) Chronic wasting disease in deer and elk: scientific facts and findings. J Vet Med Sci 65: 761–768PubMedCrossRefGoogle Scholar
  62. 62.
    Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59: 847–857PubMedCrossRefGoogle Scholar
  63. 63.
    Scott M, Groth D, Foster D, Torchia M, Yang SL, DeArmond SJ, Prusiner SB (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73: 979–988PubMedCrossRefGoogle Scholar
  64. 64.
    Scott MR, Kohler R, Foster D, Prusiner SB (1992) Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci 1: 986–997PubMedCrossRefGoogle Scholar
  65. 65.
    Sigurdson CJ, Miller MW (2003) Other animal prion diseases. Br Med Bull 66: 199–212PubMedCrossRefGoogle Scholar
  66. 66.
    Sklaviadis T, Akowitz A, Manuelidis EE, Manuelidis L (1993) Nucleic acid binding proteins in highly purified Creutzfeldt-Jakob disease preparations. Proc Natl Acad Sci USA 90: 5713–5717PubMedCrossRefGoogle Scholar
  67. 67.
    Smith PG, Bradley R (2003) Bovine spongiform encephalopathy (BSE) and its epidemiology. Br Med Bull 66: 185–198PubMedCrossRefGoogle Scholar
  68. 68.
    Supattapone S, Muramoto T, Legname G, Mehlhorn I, Cohen FE, DeArmond SJ, Prusiner SB, Scott MR (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75: 1408–1413PubMedCrossRefGoogle Scholar
  69. 69.
    Taylor DM (1992) Bovine spongiform encephalopathy (BSE): a stimulus to wider research. Med Lab Sci 49: 334–339PubMedGoogle Scholar
  70. 70.
    Telling GC, Scott M, Hsiao KK, Foster D, Yang SL, Torchia M, Sidle KC, Collinge J, DeArmond SJ, Prusiner SB (1994) Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci USA 91: 9936–9940PubMedCrossRefGoogle Scholar
  71. 71.
    Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, DeArmond SJ, Prusiner SB (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83: 79–90PubMedCrossRefGoogle Scholar
  72. 72.
    Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380: 639–642PubMedCrossRefGoogle Scholar
  73. 73.
    Vilotte JL, Soulier S, Essalmani R, Stinnakre MG, Vaiman D, Lepourry L, Da Silva JC, Besnard N, Dawson M, Buschmann A, Groschup M, Petit S, Madelaine MF, Rakatobe S, Le DA, Vilette D, Laude H (2001) Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J Virol 75: 5977–5984PubMedCrossRefGoogle Scholar
  74. 74.
    Vorberg I, Groschup MH, Pfaff E, Priola SA (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77: 2003–2009PubMedCrossRefGoogle Scholar
  75. 75.
    Wadsworth JD, Hill AF, Beck JA, Collinge J (2003) Molecular and clinical classification of human prion disease. Br Med Bull 66: 241–254PubMedCrossRefGoogle Scholar
  76. 76.
    Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347: 921–925PubMedCrossRefGoogle Scholar
  77. 77.
    Williams ES (2003) Scrapie and chronic wasting disease. Clin Lab Med 23: 139–159PubMedCrossRefGoogle Scholar
  78. 78.
    Williams ES, Miller MW (2002) Chronic wasting disease in deer and elk in North America. Rev Sci Tech 21: 305–316PubMedGoogle Scholar
  79. 79.
    Wong BS, Liu T, Li R, Pan T, Petersen RB, Smith MA, Gambetti P, Perry G, Manson JC, Brown DR, Sy MS (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J Neurochem 76: 565–572PubMedCrossRefGoogle Scholar
  80. 80.
    Wrathall AE, Brown KF, Sayers AR, Wells GA, Simmons MM, Farrelly SS, Bellerby P, Squirrell J, Spencer YI, Wells M, Stack MJ, Bastiman B, Pullar D, Scatcherd J, Heasman L, Parker J, Hannam DA, Helliwell DW, Chree A, Fraser H (2002) Studies of embryo transfer from cattle clinically affected by bovine spongiform encephalopathy (BSE). Vet Rec 150: 365–378PubMedGoogle Scholar
  81. 81.
    Wuthrich K, Riek R (2001) Three-dimensional structures of prion proteins. Adv Protein Chem 57: 55–82PubMedCrossRefGoogle Scholar
  82. 82.
    Zahn R, Guntert P, von S C, Wuthrich K (2003) NMR structure of a variant human prion protein with two disulfide bridges. J Mol Biol 326: 225–234PubMedCrossRefGoogle Scholar
  83. 83.
    Zahn R, Liu A, Luhrs T, Riek R, von S C, Lopez GF, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97: 145–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • R. -A. Moore
    • 1
  • I. Vorberg
    • 2
  • S. -A. Priola1
    • 1
  1. 1.Laboratory of Persistent Viral Diseases, Rocky Mountain LaboratoriesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUSA
  2. 2.Institute of VirologyTechnical University of MunichMunichGermany

Personalised recommendations