The role of reverse genetics systems in determining filovirus pathogenicity

  • S. Theriault
  • A. Groseth
  • H. Artsob
  • H. Feldmann
Conference paper


The family Filoviridae is comprised of two genera: Marburgvirus and Ebolavirus. To date minigenome systems have been developed for two Ebola viruses (Reston ebolavirus and Zaire ebolavirus [ZEBOV]) as well as for Lake Victoria marburgvirus, the sole member of the Marburgvirus genus. The use of these minigenome systems has helped characterize functions for many viral proteins in both genera and have provided valuable insight towards the development of an infectious clone system in the case of ZEBOV. The recent development of two such infectious clone systems for ZEBOV now allow effective strategies for experimental mutagenesis to study the biology and pathogenesis of one of the most lethal human pathogens.


Rift Valley Fever Virus Bovine Respiratory Syncytial Virus Marburg Virus Reverse Genetic System Minigenome System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accardi L, Prehaud C, Di Bonito P, Mochi S, Bouloy M, Giorgi C (2001) Activity of Toscana and Rift Valley fever virus transcription complexes on heterologous templates. J Gen Virol 82: 781–785PubMedGoogle Scholar
  2. 2.
    Baron M, Barrett T (1997) Rescue of rinderpest virus from cloned cDNA. J Virol 71: 1265–1271PubMedGoogle Scholar
  3. 3.
    Bray M (2003) Defense against filoviruses used as biological weapons. Antiviral Res 57: 53–60PubMedCrossRefGoogle Scholar
  4. 4.
    Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J (1998) A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 178: 651–661PubMedCrossRefGoogle Scholar
  5. 5.
    Bridgen A, Elliott RM (1996) Rescue of a segmented negative-stranded RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93: 15400–15404PubMedCrossRefGoogle Scholar
  6. 6.
    Borio L, Inglesby T, Peters C, Schmaljohn A, Hughes J, Jahrling P. Ksiazek T, Johnson K, Meyerhoff A, Toole T, Ascher M, Bartlett J, Breman J, Eitzen E Jr, Hamburg M, Hauer J, Henderson D, Johnson R, Kwik G, Layton M, Lillibridge S, Nabel G, Osterholm M, Perl T, Russell P, Tonat K. Working Group on Civilian Biodefense (2002) Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287: 2391–2405PubMedCrossRefGoogle Scholar
  7. 7.
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73: 251–259PubMedGoogle Scholar
  8. 8.
    Collins P, Hill M, Camargo E, Grosfeld H, Chanock R, Murphy B (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92: 11563–11567PubMedCrossRefGoogle Scholar
  9. 9.
    Connolly BM, Steele KE, Davis KJ, Geisbert TW, Kell WM, Jaax NK, Jahrling PB (1999) Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis 179[Suppl] 1: 203–217Google Scholar
  10. 10.
    Conzelmann KK (1996) Genetic manipulation of non-segmented negative-stranded RNA viruses. J Gen Virol 77: 381–389PubMedCrossRefGoogle Scholar
  11. 11.
    Conzelmann KK (1998) Non-segmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Ann Rev Genet 32: 123–162PubMedCrossRefGoogle Scholar
  12. 12.
    Conzelmann KK, Schnell M (1994) Rescue of synthetic genome RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 68: 713–719PubMedGoogle Scholar
  13. 13.
    Dimock K, Collins PL (1993) Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. J Virol 67: 2772–2778PubMedGoogle Scholar
  14. 14.
    Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, Stroher U, Klenk HD, Volchkov V (2004) Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO 23: 2175–2184CrossRefGoogle Scholar
  15. 15.
    Dunn EF, Pritlove DC, Jin H, Elliott RM (1995) Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211: 133–143PubMedCrossRefGoogle Scholar
  16. 16.
    Durbin AP, Siew JW, Murphy BR, Collins PL (1997) Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. Virology 234: 74–83PubMedCrossRefGoogle Scholar
  17. 17.
    Ebihara H, Takada A, Kobasa D, Feldmann H, Theriault S, Bray M, Kawaoka Y (2004) Genetic determinants of mouse-adaptation of Ebola Zaire virus. Annual Meeting of the American Society for Virology Montreal, Quebec, Canada p 133Google Scholar
  18. 18.
    Feldmann H, Geisbert TW, Jahrling PB, Klenk HD, Netesov SV, Peters CJ, Sanchez A, Swanepoel R, Volchkov VE (2004) Filoviridae. Virus Taxonomy, VIIIth Report of the ICTV. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Elsevier/Academic Press, London, pp 645–653Google Scholar
  19. 19.
    Feldmann H, Kiley MP (1999) Classification, structure, and replication of filoviruses. Curr Top Microbiol Immunol 235: 1–21PubMedGoogle Scholar
  20. 20.
    Feldmann H, Volchkov VE, Volchkova VA, Klenk HD (1999) The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol 15: 159–169Google Scholar
  21. 21.
    Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD (2001) Biosynthesis and role of filoviral glycoproteins. J Gen Virol 82: 2839–2848PubMedGoogle Scholar
  22. 22.
    Feldmann H, Will C, Schikore M, Slenczka W, Klenk HD (1991) Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182: 353–356PubMedCrossRefGoogle Scholar
  23. 23.
    Flick K, Hooper J, Schmaljohn C, Pettersson R, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306: 219–224PubMedCrossRefGoogle Scholar
  24. 24.
    Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for Crimean-Congo hemorrhagic fever virus. J Virol 77: 5997–6006PubMedCrossRefGoogle Scholar
  25. 25.
    Flick R, Pettersson RF (2001) Reverse gentics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75: 1643–1655PubMedCrossRefGoogle Scholar
  26. 26.
    Fodor E, Devenish L, Engelhardt OG, Palese P, Browniee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73: 9679–9682PubMedGoogle Scholar
  27. 27.
    Gallaher WR (1996) Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell (letter) 85: 477–478PubMedCrossRefGoogle Scholar
  28. 28.
    Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14: 6087–6094PubMedGoogle Scholar
  29. 29.
    Geisbert TW, Jahrling PB (1995) Differentiation of filoviruses by electron microscopy. Virus Res 39: 129–150PubMedCrossRefGoogle Scholar
  30. 30.
    Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R (2005)An RNA Polymerase I-Driven Minigenome System for Reston ebolavirus. J Virol 79: 4425–4433PubMedCrossRefGoogle Scholar
  31. 31.
    Groseth A, Ströher U, Theriault S, Feldmann H (2002) Molecular characterization of an isolate from the 1989/90 epizootic of Ebola Reston virus among imported macaques. Virus Res 87: 155–162PubMedCrossRefGoogle Scholar
  32. 32.
    Grosfeld H, Hill MG, Collins PL (1995) RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol 69: 5677–5686PubMedGoogle Scholar
  33. 33.
    He B, Paterson R, Ward C, Lamb R (1997) Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237: 249–260PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffmann EG, Webster RG (2000) Unidirectional RNA polymerase I — polymerase II transcription systems for the generation of influenza A virus from eight plasmids. J Gen Virol 81: 2843–2847PubMedGoogle Scholar
  35. 35.
    Ito H, Watanabe S, Sanchez A, Whitt M, Kawaoka Y (1999) Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 73: 8907–8912PubMedGoogle Scholar
  36. 36.
    Ito H, Watanabe S, Takada A, Kawaoka Y (2001) Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75: 1576–1580PubMedCrossRefGoogle Scholar
  37. 37.
    Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1: 569–579PubMedCrossRefGoogle Scholar
  38. 38.
    Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2: 39–43PubMedCrossRefGoogle Scholar
  39. 39.
    Lawson ND, Stillmann EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 92: 4477–4481PubMedCrossRefGoogle Scholar
  40. 40.
    Lee K, Novella I, Teng M, Oldstone M, de La Torre J (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74: 3470–3477PubMedCrossRefGoogle Scholar
  41. 41.
    Lee K, Perez M, Pinschewer D, de la Torre J (2002) Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. J Virol 76: 6393–6397PubMedCrossRefGoogle Scholar
  42. 42.
    Lopez N, Jacamo R, Franze-Fernandez MT (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75: 12241–12251PubMedCrossRefGoogle Scholar
  43. 43.
    Lopez N, Muller R, Prehaud C, Bouloy M (1995) The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69: 3972–3979PubMedGoogle Scholar
  44. 44.
    Luytjes W, Krystal M, Enami M, Pavin JD, Palese P (1989) Amplication, expression, and packaging of foreign genes by influenza virus. Cell 59: 1107–1113PubMedCrossRefGoogle Scholar
  45. 45.
    Modrof J, Muhlberger E, Klenk HD, Becker S (2002) Phosphorylation of VP30 impairs Ebola virus transcription. J Biol Chem 277: 33099–33104PubMedCrossRefGoogle Scholar
  46. 46.
    Moyer SA (1989) Replication of the genome RNAs of defective interfering particles of vesicular stomatitis and Sendai viruses using heterologous viral proteins. Virology 172: 341–345PubMedCrossRefGoogle Scholar
  47. 47.
    Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72: 8756–8764PubMedGoogle Scholar
  48. 48.
    Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73: 2333–2342PubMedGoogle Scholar
  49. 49.
    Muhlberger E (2004) Genome organization, replication and transcription of filoviruses. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England, pp 1–26Google Scholar
  50. 50.
    Murphy FA, van der Groen G, Whitfield SG, Lange JV (1978) Ebola and Marburg virus morphology and taxonomy. In: Pattyn SR (ed) Ebola virus hemorrhagic fever, 1st edn. Elsevier/North-Holland, Amsterdam, pp 61–84Google Scholar
  51. 51.
    Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43: 613–624PubMedGoogle Scholar
  52. 52.
    Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76: 406–410PubMedCrossRefGoogle Scholar
  53. 53.
    Neumann G, Noda T, Takada A, Jasenosky LD, Kawaoka Y (2004) Roles of filoviral matrix-and glycoproteins in the viral life cycle. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England pp 137–170Google Scholar
  54. 54.
    Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A virus entirely from cloned cDNAs Proc Natl Acad Sci USA 96: 9345–9350PubMedCrossRefGoogle Scholar
  55. 55.
    Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J Gen Virol 83: 2635–2665PubMedGoogle Scholar
  56. 56.
    Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202: 477–479PubMedCrossRefGoogle Scholar
  57. 57.
    Parks CL, Lerch RA, Walpita P, Sidhu MS, Udem SA (1999) Enhanced measles virus cDNA rescue and gene expression after heat shock. J Virol 73: 3560–3566PubMedGoogle Scholar
  58. 58.
    Pattnaik AK, Wertz GW (1990) Replication and amplification of defective interfering particles RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Virol 64: 2948–2957PubMedGoogle Scholar
  59. 59.
    Pelet T, Delenda C, Gubbay O, Garcin D, Kolakofsky D (1995) Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224: 405–414CrossRefGoogle Scholar
  60. 60.
    Peters CJ, Muller G, Slenczka W (1971) Morphology, development, and classification of Marburg virus. In: Martini GA, Siefert R (eds) Marburg virus disease, 1st edn. Springer, Berlin Heidelberg New York, pp 68–83Google Scholar
  61. 61.
    Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned cDNA. EMBO J 14: 5773–5784PubMedGoogle Scholar
  62. 62.
    Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916–919PubMedGoogle Scholar
  63. 63.
    Roberts A, Kretzschmar E, Perkins AS, Forman J, Price R, Buonocore L, Kawaoka Y, Rose JK (1998) Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 72: 4704–4711PubMedGoogle Scholar
  64. 64.
    Roberts A, Buonocore L, Price R, Forman J, Rose JK (1999) Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 73: 3723–3732PubMedGoogle Scholar
  65. 65.
    Ruiz-Aguello MB, Goni FM, Pereira FB, Nieva JL (1998) Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol 72: 1775–1781Google Scholar
  66. 66.
    Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93: 3602–3607PubMedCrossRefGoogle Scholar
  67. 67.
    Sanchez A, Khan A, Zaki S, Nabel G, Ksiazek T, Peters C (2001) “Filoviridae” and Ebola Viruses. In: Knipe DM, Howley PM (eds) Field’s Virology 4th edn., volume 1. Lippincott Williams and Wilkins, Philadelphia, pp 1279–1304Google Scholar
  68. 68.
    Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442–6447PubMedGoogle Scholar
  69. 69.
    Schneider U, Ohnemus A, Schwemmle M, Staeheli P (2004) Rescue of recombinant Borna disease viruses from cloned cDNA: regulatory regions determine viral virulence. Annual Meeting of the American Society for Virology Montreal, Quebec, Canada, p 146Google Scholar
  70. 70.
    Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13: 4195–4203PubMedGoogle Scholar
  71. 71.
    Stillmann EA, Rose JK, Whitt MA (1995) Replication and amplification of novel vesicular stomatitis virus minigenomes encoding viral structural proteins. J Virol 69: 2946–2953Google Scholar
  72. 72.
    Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 94: 14764–14769PubMedCrossRefGoogle Scholar
  73. 73.
    Taniguchi T, Palmieri M, Weissmann C (1978) QB DNA containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 247: 223–228CrossRefGoogle Scholar
  74. 74.
    Theriault S, Groseth A, Neumann G, Kawaoka Y, Feldmann H (2004) Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res 106: 43–50PubMedCrossRefGoogle Scholar
  75. 75.
    Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421–430PubMedCrossRefGoogle Scholar
  76. 76.
    Volchkov VE, Feldmann H, Volchkova VA, Klenk HD (1998) Processing of the Ebola virus glycoprotein by the proprotein convertases. Proc NatlAcad Sci USA 95: 5762–5767CrossRefGoogle Scholar
  77. 77.
    Volchkov VE, Volchkova VA, Dolnik O, Feldmann H, Klenk HD (2004) Structural and functional polymorphism of the glycoprotein of filoviruses. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England, pp 59–90Google Scholar
  78. 78.
    Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291: 1965–1969PubMedCrossRefGoogle Scholar
  79. 79.
    Volchkov VE, Volchkova VA, Slenczka W, Klenk HD, Feldmann H (1998) Release of viral glycoproteins during Ebola virus infection. Virology 245: 110–119PubMedCrossRefGoogle Scholar
  80. 80.
    Volchkov VE, Volchkova VA, Ströher U, Becker S, Dolnik O, Cieplik M, Garten W, Klenk HD, Feldmann H (2000) Proteolytic processing of Marburg virus glycoprotein. Virology 268: 1–6PubMedCrossRefGoogle Scholar
  81. 81.
    Volchkova VA, Feldmann H, Klenk HD, Volchkov VE (1998) The nonstructural small glycoprotein of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250: 408–414PubMedCrossRefGoogle Scholar
  82. 82.
    Volchkova VA, Klenk HD, Volchkov VE (1999) Δ-peptide is the carboxy-terminal cleavage fragment of the non-structural small glycoprotein sGP of Ebola virus. Virology 265: 164–171PubMedCrossRefGoogle Scholar
  83. 83.
    Watanabe S, Takada A, Watanabe T, Ito H, Kida H, Kawaoka Y (2000) Functional importance of the coiled-coil of the Ebola virus glycoprotein. J Virol 74: 10194–10201PubMedCrossRefGoogle Scholar
  84. 84.
    Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Ebola virus VP3O-mediated transcription is regulated by RNA secondary structure formation. J Virol 76: 8532–8539PubMedCrossRefGoogle Scholar
  85. 85.
    Weissenhorn W (2004) Structure of viral proteins. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England pp 27–58Google Scholar
  86. 86.
    Wool-Levis RJ, Bates P (1999) Endoproteolytic processing of the Ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 73: 1419–1426Google Scholar
  87. 87.
    Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ (1998) Distinct cellular interaction of secreted and transmembrane Ebola virus glycoproteins. Science 279: 1034–1036PubMedCrossRefGoogle Scholar
  88. 88.
    Yu Q, Hardy RW, Wertz GW (1995) Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol 69: 2412–2419PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • S. Theriault
    • 1
    • 2
  • A. Groseth
    • 1
    • 2
  • H. Artsob
    • 1
    • 2
  • H. Feldmann
    • 1
    • 2
  1. 1.National Laboratory for Zoonotic Diseases and Special Pathogens, National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegCanada
  2. 2.Department of Medical MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations