Advertisement

Moving Grain Boundaries During Hot Deformation of Metals: Dynamic Recrystallization

  • Frank Montheillet
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 453)

Abstract

Basic knowledge regarding kinematics and dynamics of grain boundaries in metals is first reviewed. Typical effects of grain boundary migration during hot deformation, i.e. flow stress softening and grain coarsening, are illustrated by a simple one-dimensional model. The two mechanisms of continuous and discontinuous dynamic recrystallization are then introduced and compared from recent experimental data. Semi-analytical models involving mainly strain hardening, dynamic recovery, low and high angle boundary generation and migration are proposed. Finally, possible transitions between the two varieties of dynamic recrystallization are discussed.

Keywords

Dislocation Density Flow Stress Grain Boundary Dynamic Recrystallization Twin Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayle, B., Bocher, Ph., Jonas, J.J., and Montheillet, F. (1999). Flow stress and recrystallization during the hot deformation of Cu-9%Sn alloys. Materials Science and Technology 15:803–811.Google Scholar
  2. Blaz, L., Sakai, T., and Jonas, J.J. (1983). Effect of initial grain size on the dynamic recrystallization of copper. Metal Science 17:609–616.CrossRefGoogle Scholar
  3. Bocher, Ph., Montheillet, F., and Jonas, J.J. (1997). Microstructural evolution during the dynamic recrystallization of a 304 stainless steel. In McNelley, R., ed., The third International Conference on Recrystallization and Related Phenomena. Monterey (CA). 355–362.Google Scholar
  4. Bunge, H.J. (1987). Three-dimensional texture analysis. International Materials Reviews 32:265–291.Google Scholar
  5. Busso, E.P. (1998). A continuum theory for dynamic recrystallization with microstructure-related length scales. International Journal of Plasticity 14:319–353.MATHCrossRefGoogle Scholar
  6. Chovet-Sauvage, C. (2000). Evolution des microstructures et des textures en grande deformation à chaud d’un alliage Al-Mg-Si. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.Google Scholar
  7. Couturier, G. (2003). Contribution à l’étude de la dynamique du Zener pinning: simulations numériques par elements finis. Ecole Nationale Supérieure des Mines, Saint-Etienne, France.Google Scholar
  8. De La Chapelle, S., Castelnau, O., Lipenkov, V., and Duval, P. (1998). Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. Journal of Geophysical Research 103:5091–5105.CrossRefGoogle Scholar
  9. Derby, B. (1992). Dynamic recrystallization: the steady state grain size. Scripta Metallurgica et Materialia 27:1581–1586.CrossRefGoogle Scholar
  10. Fridman, E.M., Kopezky, C.V., and Shvindlerman, L.S (1975). Effects of orientation and concentration factors on migration of individual grain boundaries in aluminium. Zeitschrift für Metallkunde 66:533–539.Google Scholar
  11. Frois, C, and Dimitrov, M.O. (1966). Influence de quelques eléments d’addition sur la recristallisation de l’aluminium très pur. Annales de Chimie 1:113–128.Google Scholar
  12. Gao, W., Sakai, T., and Miura, H. (1999). Modeling the new grain development under dynamic recrystallization. In Sakai, T., and Suzuki, H.G., eds., The Fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 659–664.Google Scholar
  13. Gavard, L. (2001). Recristallisation dynamique d’aciers inoxydables austénitiques de haute pureté. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.Google Scholar
  14. Goetz, R.L., and Seetharaman, V. (1998). Modeling dynamic recrystallization using cellular automata. Script a Materialia 38:405–413.CrossRefGoogle Scholar
  15. Gourdet, S. (1997). Etude des mécanismes de recristallisation au cours de la déformation à chaud de láaluminium. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.Google Scholar
  16. Gourdet, S., Girinon, A., and Montheillet, F. (1997). Discussion and modelling of continuous dynamic recrystallization. In Chandra, T. and Sakai, T., eds., Thermec’ 97, Wollongong (NSW), Australia. 2117–2124.Google Scholar
  17. Gourdet, S., and Montheillet, F. (2000). An experimental study of the recrystallization mechanism during hot deformation of aluminium. Materials Science and Engineering A 283:274–288.CrossRefGoogle Scholar
  18. Gourdet, S., and Montheillet, F. (2002). Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals. Acta Materialia 50:2801–2812.CrossRefGoogle Scholar
  19. Gourdet, S., and Montheillet, F. (2003). A model of continuous dynamic recrystallization. Acta Materialia 51:2685–2699.CrossRefGoogle Scholar
  20. Guillopé, M., and Poirier, J.-P. (1979). Dynamic recrystallization during creep of single crystalline halite; an experimental study. Journal of Geophysical Research 84:5557–5567.CrossRefGoogle Scholar
  21. Humphreys, F.J., and Hatherly, M. (1995). Recrystallization and related annealing phenomena. Oxford: Pergamon.Google Scholar
  22. Hunderi, O., and Ryum, N. (1996). The influence of spatial grain size correlation on normal grain growth in one dimension. Acta Materialia 44:1673–1680.CrossRefGoogle Scholar
  23. Jonas, J.J. (1994). Dynamic recrystallization-Scientific curiosity or industrial tool? Materials Science and Engineering A 184:155–165.CrossRefGoogle Scholar
  24. Kaibyshev, R.O., and Sitdikov, O.Sh. (2000). On the role of twinning in dynamic recrystallization. The Physics of Metals and Metallography 89:384–390.Google Scholar
  25. Kalisher, S. (1881). Über der Einfluss der Wärme auf die Molekularstruktur des Zinks. Berichtungen der deutschen chemischen Gesellschaft 14:2747–2753.Google Scholar
  26. Kalisher, S. (1882). Über der Molekularstruktur der Metalle. Berichtungen der deutschen chemischen Gesellschaft 15:702–712.Google Scholar
  27. Kaptsan, Y.V., Gomostyrev, Yu.N., Urtsev, V.N., Levit, V.I., and Maslennikov, V.A. (1993). Mathematical model of dynamic recrystallization. Materials Science Forum 113–115:341–348.Google Scholar
  28. Laasraoui, A., and Jonas, J.J. (1991). Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A22:1545–15558.Google Scholar
  29. Lücke, K., and Stüwe H.P. (1963). On the theory of grain boundary migration. In Himmel, L., ed., Recovery and Recrystallization in Metals. Interscience Publications. 171–209.Google Scholar
  30. Luton, M.J., and Peczak, P. (1993). Monte Carlo modeling of dynamic recrystallization: recent developments. Materials Science Forum 113–115:67–80.CrossRefGoogle Scholar
  31. Lyttle, M.T., and Wert, J.A. (1994a). Modelling of continuous recrystallization in aluminium alloys. Journal of Materials Science 29:3342–3350.CrossRefGoogle Scholar
  32. Lyttle, M.T., and Wert, J.A. (1994b). Simulative modeling of continuous recrystallization of aluminum alloys. In Jonas, J.J., Bieler, T.R., and Bowman, K.J., eds., Advances in Hot Deformation Textures and Microstructures. Warrendale (PA): The Minerals, Metals and Materials Society. 373–383.Google Scholar
  33. Mackenzie, J.K. (1958). Second paper on statistics associated with the random disorientation of cubes. Biometrika 45:229–240.MATHMathSciNetGoogle Scholar
  34. Maurice, C, and Humphreys, F.J. (1998). 2-and 3-D curvature driven vertex simulations of grain growth. In Weiland, H., ed., Grain Growth in Polycrystalline Materials III, Warrendale (PA): The Minerals, Metals and Materials Society. 81–90.Google Scholar
  35. McQueen, H.J., Knustad, O., Ryum, N., and Solberg, J.K. (1985). Microstructural evolution in Al deformed to strains of 60 at 400 °C. Scripta Metallurgica 19:73–78.CrossRefGoogle Scholar
  36. Montheillet, F. (1999). Modeling the steady state regime of discontinuous dynamic recrystallization. In Sakai, T., and Suzuki, H.G., eds., The Fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 651–658.Google Scholar
  37. Montheillet, F., Cohen, M., and Jonas, J.J. (1984). Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe. Acta Metallurgica 32:2077–2089.CrossRefGoogle Scholar
  38. Montheillet, F., Thomas, J.-Ph., and Damamme, G. (2002). Distribution de la taille des grains recristallisés dynamiquement dans les matériaux métalliques. In Congrès Matériaux 2002, Tours, France. CD-ROM publication.Google Scholar
  39. Oliveira, T. (2003). Effet du niobium et du titane sur la dèformation à chaud d’aciers inoxydables ferritiques stabilises. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.Google Scholar
  40. Oliveira, T., and Montheillet, F. (2002). Evolution de la microstructure et de la texture d’aciers inoxydables ferritiques stabilises pendant la torsion à chaud. In Congrès Matériaux 2002, Tours, France. CD-ROM publication.Google Scholar
  41. Peczak, P. (1995). A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metallurgica et Materialia 43:1279–1291.CrossRefGoogle Scholar
  42. Ponge, D., and Gottstein, G. (1998). Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Materialia 46:69–80.CrossRefGoogle Scholar
  43. Rollett, A.D., Luton, M.J., and Srolovitz, D.J. (1992). Microstructural simulation of dynamic recrystallization. Acta Metallurgica et Materialia 40:43–55.CrossRefGoogle Scholar
  44. Rossard, C, and Blain, P. (1959). Evolution de la structure de l’acier sous l’effet de la déformation plastique à chaud. Mémoires Scientiflques de la Revue de Métallurgie 56:285–300.Google Scholar
  45. Sakai, T., and Jonas, J.J. (1984). Dynamic recrystallization: mechanical and microstructural considerations. Acta Metallurgica 32:189–209.CrossRefGoogle Scholar
  46. Sandström, R., and Lagneborg, R. (1975). A model for hot working occurring by recrystallization. Acta Metallurgica 23:387–398.CrossRefGoogle Scholar
  47. Senkov, O.N., Jonas, J.J., and Froes, F.H. (1998). Steady-state flow controlled by the velocity of grain-boundary migration. Materials Science and Engineering A255:49–53.Google Scholar
  48. Stüwe, H.P. (1968). Do metals recrystallize during hot working? In Tegart, W.J.McG., and Sellars, C.M., eds., Deformation under Hot Working Conditions, ISI Special Report 108, Iron and Steel institute, London, 1–6.Google Scholar
  49. Stüwe, H.P., and Ortner, B. (1974). Recrystallization in hot working and creep. Metal Science 8:161–167.Google Scholar
  50. Tanaka, K., Otsuka, M., and Yamagata, H. (1999). Effect of orientation and purity on the dynamic recrystallization of aluminium single crystals with multi glide systems. Materials Transactions JIM 40:242–247.Google Scholar
  51. Thomas, J.-Ph. (2003). Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France. To be published.Google Scholar
  52. Thomas, J.-Ph., Montheillet, F., and Dumont, Ch. (2003). Microstructural evolutions of superalloy 718 during dynamic and metadynamic recrystallizations. In Chandra, T., Torralba, J.M., and Sakai, T., eds., THERMEC’2003, Leganés, Madrid, Spain, Materials Science Forum 426–432:791–796.Google Scholar
  53. Thomsen, E.G., Yang, C.T., and Bierbower J.B. (1954). In: An Experimental Investigation of the Mechanics of Plastic Deformation of Metals. Berkeley: University of California Press.Google Scholar
  54. Thomson, W. (1887). On the division of space with minimum partitional area. Philosophical Magazine 24:503–514.Google Scholar
  55. Viswanathan, R., and Bauer, C.L. (1973). Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metallurgica 21:1099–1109.CrossRefGoogle Scholar
  56. Volkov, A.Ye, Likhachev, V.A., and Shikhobalov, L.S. (1980). Theory of grain boundaries as autonomous imperfections of a crystal. Physics of Metals and Metallurgy 47:1–12.Google Scholar
  57. Winning, M., Gottstein, G., and Shvindlerman, L.S. (1999). Influence of external shear stresses on grain boundary migration. In Sakai, T., and Suzuki, H.G., eds., The fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 451–456.Google Scholar
  58. Yamagata, H. (1992). Multipeak stress oscillations of five-nine-purity aluminum during a hot compression test. Scripta Metallurgica et Materialia 27:201–203.CrossRefGoogle Scholar
  59. Yamagata, H. (1995). Dynamic recrystallization and dynamic recovery in pure aluminum at 583 K. Acta Metallurgica et Materialia 43:723–729.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2004

Authors and Affiliations

  • Frank Montheillet
    • 1
  1. 1.Centre SMS, CNRS UMR 5146Ecole des MinesSaint-EtienneFrance

Personalised recommendations