Thermodynamics and Kinetics of Phase and Twin Boundaries

  • Franz Dieter Fischer
  • Narendra K. Simha
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 453)


This chapter describes a framework for studying the propagation of singular interfaces such as phase and twin boundaries in multicomponent bodies. The balance equations for mass, energy and entropy at an interface between two phases are examined in detail. The chemical and mechanical contributions to the total thermodynamic driving force are identified for both ideal and real interfaces. Transformation kinetics, based on these thermodynamic driving forces, is formulated for the martensitic and diffusional transformations. The framework is illustrated by two examples, the first estimates the thickness of a deformation twin, and the second describes the growth of an allotriomorphic ferrite film at the expense of the austenitic phase.


Martensitic Transformation Twin Boundary Parent Phase Resolve Shear Stress Solute Drag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhm, H.J., Fischer, F.D. and Reisner, G. (1997). Evaluation of elastic strain energy of spheroidal inclusions with uniform volumetric and shear eigenstrains. Scripta Materialia 36:1053–1059, Scripta Materiala 49:107.CrossRefGoogle Scholar
  2. Cahn, J.W. (1962). The impurity-drag effect in grain boundary motion. Acta metall. 10:789–798.CrossRefGoogle Scholar
  3. Cermelli, P., Gurtin, M.E. (1994). The dynamics of solid-solid phase transitions-2. Incoherent interfaces. Arch. Rational Mech. Anal. 127:41–99.MATHCrossRefMathSciNetGoogle Scholar
  4. Christian, J.W., Mahajan, S. (1995). Deformation twinning. Progr. Mater. Sci. 39:1–157.CrossRefGoogle Scholar
  5. Cocks, A.C.F., Gill, S.P.A., Pan, J. (1999). Modeling microstructure evolution in engineering materials. In Giessen, E.v.d. and Wu, T.Y., eds., Advances in Applied Mechanics. San Diego: Academic Press, Vol.36. 81–162.Google Scholar
  6. Emmerich, H. (2003). The Diffusive Interface Approach in Materials Science. Berlin, Heidelberg, New York; Springer-Verlag.Google Scholar
  7. Fischer, F.D., Oberaigner, E.R. (2001). A micromechanical model of interphase boundary movement during solid-solid phase transformations. Archive of Applied Mechanics 71:193–205.MATHGoogle Scholar
  8. Fischer, F.D., Oberaigner, E.R. (2000). Deformation, stress state and thermodynamic force for a transforming spherical inclusion in an elastic-plastic material. ASME J. Appl. Mech. 67:793–796.MATHCrossRefGoogle Scholar
  9. Fischer, F.D., Reisner, G. (1998). A criterion for the martensitic transformation of a microregion in an elastic-plastic material. Acta mater. 46:2095–2102.CrossRefGoogle Scholar
  10. Fischer, F.D., Schaden, T., Appel, F., Clemens, H. (2003). Mechanical twins, their development and growth. Europ. J. Mechanics A 22:709–726.MATHCrossRefMathSciNetGoogle Scholar
  11. Fischer, F.D., Simha, N.K., Svoboda, J. (2003). Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials. ASMEJ. Eng. Mat. & Technology 125:266–276.CrossRefGoogle Scholar
  12. Fried, E., Gurtin, M.E. (1999). Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Statistical Physics 95:1361–1427.MATHCrossRefMathSciNetGoogle Scholar
  13. Grinfeld, M. (1991). Thermodynamic Methods in the Theory of Heterogeneous Systems. Harlow: Longman Scientific & Technical.Google Scholar
  14. Gurtin, M.E., Jabbour, M.E. (2002). Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Rational Mech. Anal. 163:171–208.MATHCrossRefMathSciNetGoogle Scholar
  15. Gurtin, M.E., Voorhees, P. (1993). The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. Lond. A 440:323–343.MATHMathSciNetCrossRefGoogle Scholar
  16. Gurtin, M.E. (1993). The dynamics of solid-solid phase transitions-1. Coherent interfaces. Arch. Rational Mech. Anal. 123:305–335.MATHCrossRefMathSciNetGoogle Scholar
  17. Hillert, M., Rettenmayr, M. (2003). Deviation from local equilibrium at migrating phase interfaces. Acta mater. 51:2803–2809.CrossRefGoogle Scholar
  18. Irschik, H. (2003). On the necessity of surface growth terms for the consistency of jump relations at a singular surface. Acta Mech. 162:195–211.MATHCrossRefGoogle Scholar
  19. Lehner, F.K. (1990). Thermodynamics of rock deformation by pressure solution. In Barber, D.J., Meredith, P.G. eds., Deformation Processes in Minerals Ceramics and Rocks. London et al.: Unwin Hyman. 296–333.Google Scholar
  20. Levitas, V.I. (1999). Thermomechanical and kinetic approaches to diffusional-displacive phase transitions in inelastic materials. Mechanics Research Communications, 27:217–227.CrossRefMathSciNetGoogle Scholar
  21. Levitas, V.I. (2000). Structural changes without stable intermediate state in inelastic material. Part I. General thermomechanical and kinetic approaches; Part II. Applications to displacive and diffusional-displacive phase transformations, strain-induced chemical reactions and ductile fracture. Int. J. Plasticity, 16:805–849,851–892.MATHCrossRefGoogle Scholar
  22. Maugin, G.A. (1999). The Thermomechanics of Nonlinear Irreversible Behaviors. Singapore et al.: World Scientific. 295–323.MATHGoogle Scholar
  23. Morland, L.W., Gray, J.M.N.T. (1995). Phase change interactions and singular fronts. Continuum Mech. Thermodyn. 7:387–414.MATHMathSciNetGoogle Scholar
  24. Petryk, H., Fischer, F.D., Marketz, W., Clemens, H., Appel, F. (2003). An energy approach to the formation of discrete twin bands in polycrystalline solids. Metall. Mater. Trans. A. 34:2827–2836.Google Scholar
  25. Reisner, G., Fischer, F.D., Wen, Y.H., Werner, E.A. (1999). Interaction energy between martensitic variants. Metall Mater. Trans. A 30A:2583–2590.Google Scholar
  26. Simha, N.K., Bhattacharya, K. (1998). Kinetics of phase boundaries with edges and junctions. J. Mech. Phys. Solids 46:2323–2359.MATHCrossRefMathSciNetGoogle Scholar
  27. Slattery, J.C. (1990). Interfacial Transport Phenomena. New York Berlin Heidelberg et al.: Springer-Verlag.Google Scholar
  28. Svoboda, J., Fischer, F.D., Fratzl, P., Gamsjäger, E., Simha, N.K. (2001). Kinetics of interfaces during diffusional transformations. Acta mater. 49:1249–1259.CrossRefGoogle Scholar
  29. Svoboda, J., Fischer, F.D., Gamsjäger, E. (2002). Influence of solute segregation and drag on properties of migrating interfaces. Acta mater. 50:967–977.CrossRefGoogle Scholar
  30. Svoboda, J., Fischer, F.D., Fratzl, P., Kroupa, A. (2002). Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta mater. 50:1369–1381.CrossRefGoogle Scholar
  31. Svoboda, J., Gamsjäger, E., Fischer, F.D., Fratzl, P. (2004). Application of the thermodynamic extremal principle of the diffusional phase transformations., Acta mater. 52:959–967.CrossRefGoogle Scholar
  32. Thornton, K., Ågren, J., Voorhees, P.W. (2003). Modelling the evolution of phase boundaries in solids at the meso-and nano-scales. Acta mater. 51:5675–5710.CrossRefGoogle Scholar
  33. Yan, W.Y., Reisner, G., Fischer, F.D. (1997). Micromechanical study on the morphology of martensite in constrained zirconia. Acta mater. 45:1969–1976.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2004

Authors and Affiliations

  • Franz Dieter Fischer
    • 1
    • 3
  • Narendra K. Simha
    • 2
  1. 1.Institute of MechanicsMontanuniversität LeobenLeobenAustria
  2. 2.Department of Mechanical EngineeringUniversity of MiamiCoral GablesUSA
  3. 3.Erich Schmid Institute for Materials ScienceAustrian Academy of SciencesLeobenAustria

Personalised recommendations