Skip to main content

Thermodynamics and Kinetics of Phase and Twin Boundaries

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 453))

Abstract

This chapter describes a framework for studying the propagation of singular interfaces such as phase and twin boundaries in multicomponent bodies. The balance equations for mass, energy and entropy at an interface between two phases are examined in detail. The chemical and mechanical contributions to the total thermodynamic driving force are identified for both ideal and real interfaces. Transformation kinetics, based on these thermodynamic driving forces, is formulated for the martensitic and diffusional transformations. The framework is illustrated by two examples, the first estimates the thickness of a deformation twin, and the second describes the growth of an allotriomorphic ferrite film at the expense of the austenitic phase.

F.D. Fischer expresses his heart-felt thanks for the intensive discussions, the help and the contributions from (in alphabetic order) Prof. P. Fratzl, former Professor of Metal Physics and Director of the Erich Schmid Institute until September 2003, now with Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany; Prof. V. Levitas, Department of Mechanical Engineering, Texas Technical University, Lubbock, USA; and Dr. J. Svoboda, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno. Furthermore, the fundings of Christian Dopper Laboratory of Functionally Oriented Materials Design, Leoben/Vienna, Austria, Materials Centre Leoben, and the FWF (Project number: P15251) are kindly appreciated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Böhm, H.J., Fischer, F.D. and Reisner, G. (1997). Evaluation of elastic strain energy of spheroidal inclusions with uniform volumetric and shear eigenstrains. Scripta Materialia 36:1053–1059, Scripta Materiala 49:107.

    Article  Google Scholar 

  • Cahn, J.W. (1962). The impurity-drag effect in grain boundary motion. Acta metall. 10:789–798.

    Article  Google Scholar 

  • Cermelli, P., Gurtin, M.E. (1994). The dynamics of solid-solid phase transitions-2. Incoherent interfaces. Arch. Rational Mech. Anal. 127:41–99.

    Article  MATH  MathSciNet  Google Scholar 

  • Christian, J.W., Mahajan, S. (1995). Deformation twinning. Progr. Mater. Sci. 39:1–157.

    Article  Google Scholar 

  • Cocks, A.C.F., Gill, S.P.A., Pan, J. (1999). Modeling microstructure evolution in engineering materials. In Giessen, E.v.d. and Wu, T.Y., eds., Advances in Applied Mechanics. San Diego: Academic Press, Vol.36. 81–162.

    Google Scholar 

  • Emmerich, H. (2003). The Diffusive Interface Approach in Materials Science. Berlin, Heidelberg, New York; Springer-Verlag.

    Google Scholar 

  • Fischer, F.D., Oberaigner, E.R. (2001). A micromechanical model of interphase boundary movement during solid-solid phase transformations. Archive of Applied Mechanics 71:193–205.

    MATH  Google Scholar 

  • Fischer, F.D., Oberaigner, E.R. (2000). Deformation, stress state and thermodynamic force for a transforming spherical inclusion in an elastic-plastic material. ASME J. Appl. Mech. 67:793–796.

    Article  MATH  Google Scholar 

  • Fischer, F.D., Reisner, G. (1998). A criterion for the martensitic transformation of a microregion in an elastic-plastic material. Acta mater. 46:2095–2102.

    Article  Google Scholar 

  • Fischer, F.D., Schaden, T., Appel, F., Clemens, H. (2003). Mechanical twins, their development and growth. Europ. J. Mechanics A 22:709–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer, F.D., Simha, N.K., Svoboda, J. (2003). Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials. ASMEJ. Eng. Mat. & Technology 125:266–276.

    Article  Google Scholar 

  • Fried, E., Gurtin, M.E. (1999). Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Statistical Physics 95:1361–1427.

    Article  MATH  MathSciNet  Google Scholar 

  • Grinfeld, M. (1991). Thermodynamic Methods in the Theory of Heterogeneous Systems. Harlow: Longman Scientific & Technical.

    Google Scholar 

  • Gurtin, M.E., Jabbour, M.E. (2002). Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Rational Mech. Anal. 163:171–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E., Voorhees, P. (1993). The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. Lond. A 440:323–343.

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E. (1993). The dynamics of solid-solid phase transitions-1. Coherent interfaces. Arch. Rational Mech. Anal. 123:305–335.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillert, M., Rettenmayr, M. (2003). Deviation from local equilibrium at migrating phase interfaces. Acta mater. 51:2803–2809.

    Article  Google Scholar 

  • Irschik, H. (2003). On the necessity of surface growth terms for the consistency of jump relations at a singular surface. Acta Mech. 162:195–211.

    Article  MATH  Google Scholar 

  • Lehner, F.K. (1990). Thermodynamics of rock deformation by pressure solution. In Barber, D.J., Meredith, P.G. eds., Deformation Processes in Minerals Ceramics and Rocks. London et al.: Unwin Hyman. 296–333.

    Google Scholar 

  • Levitas, V.I. (1999). Thermomechanical and kinetic approaches to diffusional-displacive phase transitions in inelastic materials. Mechanics Research Communications, 27:217–227.

    Article  MathSciNet  Google Scholar 

  • Levitas, V.I. (2000). Structural changes without stable intermediate state in inelastic material. Part I. General thermomechanical and kinetic approaches; Part II. Applications to displacive and diffusional-displacive phase transformations, strain-induced chemical reactions and ductile fracture. Int. J. Plasticity, 16:805–849,851–892.

    Article  MATH  Google Scholar 

  • Maugin, G.A. (1999). The Thermomechanics of Nonlinear Irreversible Behaviors. Singapore et al.: World Scientific. 295–323.

    MATH  Google Scholar 

  • Morland, L.W., Gray, J.M.N.T. (1995). Phase change interactions and singular fronts. Continuum Mech. Thermodyn. 7:387–414.

    MATH  MathSciNet  Google Scholar 

  • Petryk, H., Fischer, F.D., Marketz, W., Clemens, H., Appel, F. (2003). An energy approach to the formation of discrete twin bands in polycrystalline solids. Metall. Mater. Trans. A. 34:2827–2836.

    Google Scholar 

  • Reisner, G., Fischer, F.D., Wen, Y.H., Werner, E.A. (1999). Interaction energy between martensitic variants. Metall Mater. Trans. A 30A:2583–2590.

    Google Scholar 

  • Simha, N.K., Bhattacharya, K. (1998). Kinetics of phase boundaries with edges and junctions. J. Mech. Phys. Solids 46:2323–2359.

    Article  MATH  MathSciNet  Google Scholar 

  • Slattery, J.C. (1990). Interfacial Transport Phenomena. New York Berlin Heidelberg et al.: Springer-Verlag.

    Google Scholar 

  • Svoboda, J., Fischer, F.D., Fratzl, P., Gamsjäger, E., Simha, N.K. (2001). Kinetics of interfaces during diffusional transformations. Acta mater. 49:1249–1259.

    Article  Google Scholar 

  • Svoboda, J., Fischer, F.D., Gamsjäger, E. (2002). Influence of solute segregation and drag on properties of migrating interfaces. Acta mater. 50:967–977.

    Article  Google Scholar 

  • Svoboda, J., Fischer, F.D., Fratzl, P., Kroupa, A. (2002). Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta mater. 50:1369–1381.

    Article  Google Scholar 

  • Svoboda, J., Gamsjäger, E., Fischer, F.D., Fratzl, P. (2004). Application of the thermodynamic extremal principle of the diffusional phase transformations., Acta mater. 52:959–967.

    Article  Google Scholar 

  • Thornton, K., Ågren, J., Voorhees, P.W. (2003). Modelling the evolution of phase boundaries in solids at the meso-and nano-scales. Acta mater. 51:5675–5710.

    Article  Google Scholar 

  • Yan, W.Y., Reisner, G., Fischer, F.D. (1997). Micromechanical study on the morphology of martensite in constrained zirconia. Acta mater. 45:1969–1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 CISM, Udine

About this chapter

Cite this chapter

Fischer, F.D., Simha, N.K. (2004). Thermodynamics and Kinetics of Phase and Twin Boundaries. In: Fischer, F.D. (eds) Moving Interfaces in Crystalline Solids. CISM International Centre for Mechanical Sciences, vol 453. Springer, Vienna. https://doi.org/10.1007/3-211-27404-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-211-27404-9_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23899-8

  • Online ISBN: 978-3-211-27404-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics