Utilization of the thermodynamic extremal principle for modelling in material science

  • J. Svoboda
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 453)


Modelling represents an important tool in the material science. It can simulate the technological steps as well as predict the material properties. A lot of technological steps are performed as well as several parts are operating at elevated temperatures. Under these conditions the thermodynamics of irreversible processes can describe successfully the processes occurring in the material. Each model represents a simplification of the reality and should be concentrated on the effects of the most interest. In many cases the system can be described by a set of the most characteristic parameters, the evolution of which we are interested in. In the classical way, the evolution of the parameters is obtained by solution of the phenomenological equations given by laws of irreversible thermodynamics. In an alternative way the laws of irreversible thermodynamics can be described by an extremal principle. Some examples of modelling in material science based on application of the extremal principle are presented in this chapter. It is demonstrated, that the application of the extremal principle represents a systematic way, how some models can effectively be developed.


Representative Volume Element Interface Velocity Massive Transformation Extremal Principle Interface Mobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazarov I. P., Gevorkyan E. V., Nikolaev P. N. (1989) Non-Equilibrium Thermodynamics and Physical Kinetics. Moscow University Press, Moscow (in Russian).Google Scholar
  2. Callen H. B. (1960). Thermodynamics. Wiley, New York.MATHGoogle Scholar
  3. Fischer F. D., Simha N. K., Svoboda J. (2003). Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials. ASME J Eng Mat & Technology 125:266–276.CrossRefGoogle Scholar
  4. Fischer F. D., Svoboda J., Fratzl P. A thermodynamic approach to grain growth and coarsening. Philos. Mag. 83:1075–1093.Google Scholar
  5. Glicksman M. E. (2000). Diffusion in Solids. New York: John Wiley & Sons, Inc.Google Scholar
  6. Groot S. R., Mazur P. (1962). Non-Equilibrium Thermodynamics. North-Holland, Amsterdam.Google Scholar
  7. Hartmann M. A., Weinkammer R., Fratzl P., Svoboda J., Fischer F. D. (2003). Onsager’s coefficients and diffusion laws — a study based on Monte-Carlo simulations, to be published.Google Scholar
  8. Hillert M. (1965). On the theory of normal and abnormal grain growth. Acta metall. 13:227–238.CrossRefGoogle Scholar
  9. Kozeschnik E., Svoboda J., Fratzl P., Fischer F. D. (2004). Modelling of kinetics in multi-component multi-phase multi-particle systems II. — Numerical solution and application, Mater. Sci. Eng. A, in press.Google Scholar
  10. Krielaart G. (1995). Primary ferrite formation from supersaturated austenite, Ph. D. thesis, TU-Delft.Google Scholar
  11. Lee B. J., Oh K. H. (1996). Numerical treatment of the moving interface in diffusional reactions. Z. Metallkd. 87:195–204.Google Scholar
  12. Lidiard A. B. (1986). A note on Manning’s relations for concentrated multicomponent alloys. Acta metall. 34:1487–1490.CrossRefGoogle Scholar
  13. Lücke, K., Stüwe, H. P. (1971). On the theory of impurity controlled grain boundary motion. Acta metall. 19:1087–1099.CrossRefGoogle Scholar
  14. Manning J. R. (1971). Correlation factors for diffusion in nondilute alloys Phys. Rew. B4:1111–1121.CrossRefGoogle Scholar
  15. Moleko L. K., Allnatt A. R., Allnatt E. L. (1989). A self-consistent theory of matter transport in a random lattice gas and some simulation results. Philos. Mag. A59:141–160.Google Scholar
  16. Onsager L. (1931). Reciprocal relations in irreversible processes. I. Phys. Rev. 37:405–426.MATHCrossRefGoogle Scholar
  17. Prigogine I. (1967). Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Interscience, New York.Google Scholar
  18. Shewmon P.. (1989). Diffusion in Solids. The Minerals, Metals & Materials Society, Warrendale.Google Scholar
  19. Svoboda J., Turek I. (1991). On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos. Mag. B64:749–759.Google Scholar
  20. Svoboda J., Fischer F. D., Fratzl P., Kroupa A. (2002). Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta mater. 50:1369–1381.CrossRefGoogle Scholar
  21. Svoboda J., Fischer F. D., Gamsjäger E. (2002a). Influence of solute segregation and drag on properties of migrating interfaces. Acta mater. 50:967–977.CrossRefGoogle Scholar
  22. Svoboda J., Gamsjäger E., Fischer F. D., Fratzl P. (2004). Application of the thermodynamic extremal principle to the diffusional phase transformations, Acta mater. 52:959–967.CrossRefGoogle Scholar
  23. Svoboda J., Fischer F. D., Fratzl P., Kozeschnik E. (2004a). Modelling of kinetics in multi-component multi-phase multi-particle systems I. — Theory. Mater. Sci. Eng. A, in press.Google Scholar
  24. Ziegler H. (1961). Zwei Extremalprinzien der irreversiblen Thermodynamik. Ing.-Arch. 30:410–416.CrossRefMathSciNetGoogle Scholar
  25. Ziegler H. (1963). in I.N. Sneddon and R. Hill eds., Progress in Solid Mechanics, Vol. 4, North-Holland, Amsterdam. 93–193.Google Scholar

Copyright information

© CISM, Udine 2004

Authors and Affiliations

  • J. Svoboda
    • 1
  1. 1.Institute of Physics of Materials Academy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations