Application of Configurational Mechanics to Elastic Solids with Defects and Cracks

  • R. Kienzler
  • G. Herrmann
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 453)


Classical mechanics, i. e., in physical space is concerned with forces, stresses and strains and attempts to describe the motion and/or deformation of bodies with mass. In this context, the notions of tractions, trajectories, balance and conservation laws, stability of equilibrium etc. are well established. Mechanics in material space (or configurational mechanics) describes the behaviour of defects (e. g., voids, dislocations, cracks) as they move relatively to the material, in which they find themselves. Concerning this change of configuration, similar notions, as given above, are introduced in material space. After providing the elements of configurational mechanics the method is applied to elastic solids with defects and cracks. In particular, the hole-dislocation interaction problem is discussed and the use of path-independent integrals and local failure criteria in fracture mechanics are demonstrated.


Circular Hole Elastic Solid Material Force Material Space Eshelby Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, A. (1984). The three-dimensional J-integral. Ph.D. Thesis, Technical University Delft.Google Scholar
  2. Benthem, J.P., and Koiter, W.T. (1973). Asymptotic approximations to crack problems. In: Sih, G.C. (ed.), Mechanics of Fracurel. Noordhoff, Leyden 131–178.Google Scholar
  3. Budiansky, B. and Rice, J.R. (1973). Conservation laws and energy-release rates. J. Appl. Meek. 40, 201–203MATHGoogle Scholar
  4. Chien, N. (1992). Conservation laws in non-homogeneous and dissipative mechanical systems. Ph. D. Thesis, Stanford University.Google Scholar
  5. Dundurs, J. and Mura, T. (1964). Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Sol 12, 177–189.CrossRefMathSciNetGoogle Scholar
  6. Eshelby, J.D. (1975 a). The elastic energy-momentum tensor. J. Elast. 5, 321–335.MATHCrossRefMathSciNetGoogle Scholar
  7. Eshelby, J.D., (1975b). The calculation of energy release rates. In: Sih, G.C, van Elst, H.C. and Broek, D. (eds.), Prospects of Fracture Mechanics. Noordhoff, Leyden 69–84.Google Scholar
  8. Freund, L.B. (1972). Energy flux into the tip of an extending crack in an elastic solid. J. Elast. 2, 341–349CrossRefGoogle Scholar
  9. Freund, L. B. (1993). Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, U.K.Google Scholar
  10. Fung, Y.C. (1963). Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  11. Gelfand, I.M. and Fomin, S.V. (1963). Calculus of Variations. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  12. Golebiewska-Herrmann, A. and Herrmann, G. (1981). On energy-release rates for a plane crack. J. Appl. Mech. 48, 525–528.MATHGoogle Scholar
  13. Griffith, A.A. (1920). The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London A 211, 163–198.Google Scholar
  14. Günther, W. (1962). Über einige Randintegrale der Elastomechanik. Abh. Braunschw. Wiss. Ges. 14, 53–72.MATHGoogle Scholar
  15. Honein, T. Chien, N. and Herrmann, G. (1991). On conservation laws for dissipative systems. Phys. Lett. A 155, 223–224.CrossRefMathSciNetGoogle Scholar
  16. Irvin, G.R. (1958). Fracture. In: Flüge, S. (ed.). Handbuch der Physik. Springer, Berlin VI, 551–590.Google Scholar
  17. Kanninen, M.F. and Popelar, C.H. (1985). Advanced Fracture Mechanics. Clarendon Press, Oxford.MATHGoogle Scholar
  18. Kienzler, R. (1993). Konzepte der Bruchmechanik. Vieweg, Braunschweig.Google Scholar
  19. Kienzler, R. and Duan, Z.P. (1987). On the distribution of hoop stresses around circular holes in elastic sheets. J. Appl. Mech. 54, 110–114.MATHCrossRefGoogle Scholar
  20. Kienzler, R. and Herrmann, G. (1986). An elementary theory of defective beams. Acta Mech. 62, 37–46.MATHCrossRefGoogle Scholar
  21. Kienzler, R. and Herrmann, G. (1997). On the properties of the Eshelby tensor. Acta Mech. 125 73–91.MATHCrossRefMathSciNetGoogle Scholar
  22. Kienzler, R. and Herrmann, G. (2000). Mechanics in material space. Springer, Berlin.MATHGoogle Scholar
  23. Kienzler, R. and Herrmann, G. (2002). Fracture criteria based on local properties of the Eshelby tensor. Mech. Res. Comm. 29, 521–527.MATHCrossRefMathSciNetGoogle Scholar
  24. Kienzler, R. and Kordisch, H. (1990). Calculation of J 1 and J 2 using the L and M integrals. Int. J. Fracture 43, 213–225.CrossRefGoogle Scholar
  25. Kordisch, H. (1982). Untersuchungen zum Verhalten von Rissen unter überlagerter Normal-und Scherbeanspruchung. Dissertation, Universität Karlsruhe.Google Scholar
  26. Noether, E. (1918). Invariante Variationsprobleme. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 2, 235–257.Google Scholar
  27. Olver, P.J. (1993). Applications of Lie Groups to Differential Equations, 2nd ed. Graduate Texts in Mathematics, No 107. Springer, New York.MATHGoogle Scholar
  28. Paris, P.C. and Sih, G.C. (1965). Stress analysis of cracks. In: Fracture Toughness Testing and. its Applications, ASTM STP 381. American Society for Testing and Materials, Philadelphia 30–81.Google Scholar
  29. Rice, J.R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl Mech. 35, 379–386.Google Scholar
  30. Riedel, H. (1984). Die dritte Dimension in der Bruchmechanik. Tagungsband der 16. Sitzungdes Arbeitskreises Bruchvorgänge im DVM. Karlsruhe 7–14.Google Scholar
  31. Schweins, (1849). Fliehmomente oder die Summe (xX + yY) bei Kräften in der Ebene, und(xX + yY + zZ) bei Kräften im Raume. Crelles J. reine angew. Math. 38. 77–88.MATHGoogle Scholar
  32. Sih, G.C. (1973). Hanbook of Stress Intensity Factors. Lehigh University.Google Scholar
  33. Stark, J.P. (1976). Solid State Diffusion. Wiley, New York.Google Scholar
  34. Tada, H., Paris, P.C. and Irwin, G.R. (1973). The Stress Analysis of Cracks Handbook. Hellertown, Pennsylvania.Google Scholar
  35. Timoshenko, S.P., and Goodier, J.N. (1970). Theory of Elasticity, 3rd ed. McGraw-Hill, NewYork.MATHGoogle Scholar
  36. Volterra, V. (1907). Sur l’équilibre des corps élastiques multiplement connexes. Annls. Scient. Éc. norm. sup. Paris 24, 401–517.MathSciNetGoogle Scholar
  37. Williams, M.L. (1957). On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 109–144.MATHMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2004

Authors and Affiliations

  • R. Kienzler
    • 1
  • G. Herrmann
    • 2
  1. 1.University of BremenBremenGermany
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations