An Efficient Algorithm for De Novo Peptide Sequencing

  • S. Brunetti
  • D. Dutta
  • S. Liberatori
  • E. Mori
  • D. Varrazzo
Conference paper


In this paper we propose a new algorithm for the de novo peptide sequencing problem. This problem reconstructs a peptide sequence from a given tandem mass spectra data containing n peaks. We first build a directed acyclic graph G = (V, E) in O(n log n) time, where vV is a spectrum mass ion or a complementary mass to a spectrum ion. The solutions of this problem are then given by the paths in the graph between two designated vertices. Unlike previous approaches, the proposed algorithm does not use dynamic programming, but it builds the graph in a progressive fashion using a priority queue, thus obtaining an improvement over other methods [1,2].


Directed Acyclic Graph Mass Peak Priority Queue Dynamic Programming Approach Spectrum Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Dančík, T. A. Addona, K. R. Clauser, J. E. Vath, P. A. Pevzner (1999), De novo peptide sequencing via tandem mass spectrometry, Jour. Comp. Bio., vol. 6, pp. 327–342.Google Scholar
  2. [2]
    T. Chen, M.-Y. Kao, M. Tepel, J. Rush, G. M. Church (2000), A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry, Proc. 11th ACM-SIAM symposium on Discrete algorithms, pp. 389–398.Google Scholar
  3. [3]
    J. R. Yates, III (1998), Mass spectrometry and the age of the proteome, Jour. Mass Spec., no. 33, pp. 1–19.CrossRefGoogle Scholar
  4. [4]
    B. Lu, T. Chen (2003), A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry, Jour. Comp. Bio., no. 10(1), pp. 1–12.CrossRefGoogle Scholar
  5. [5]
    V. Bafna, N. Edwards (2003), On de novo interpretation of tandem mass spectra for peptide identification, Proc. 7th conference on Computational Molecular Biology, ACM Press, pp. 9–18.Google Scholar
  6. [6]
    S. Baginsky, M. Cieliebak, W. Gruissem, T. Klemann, Z. Lipták, M. Müller, P. Penna (2002), AuDeNS: A tool for automatic de novo peptide sequencing, tech. rep., ETH Zurich, Dept. of Computer Science.Google Scholar
  7. [7]
    G. Pandurangan, H. Ramesh (2002), The restriction mapping problem revisited, Jour. Computer and System Sciences, no. 65, pp. 526–544.MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Bansal, M. Cieliebak, Z. Lipták (2004), Efficient algorithms for finding submasses in weighted strings, Combinatorial Pattern Matching 15th Annual Symposium, vol. 3109, CPM 2004.Google Scholar
  9. [9]
    A. P. Snyder (2000), Interpreting Protein Mass Spectra: A Comprehensive Resource, American Chemical Society and Oxford University Press.Google Scholar
  10. [10]
    T. H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introduction to Algorithms, MIT Press, Cambridge, MA.Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • S. Brunetti
    • 1
  • D. Dutta
    • 2
  • S. Liberatori
    • 3
  • E. Mori
    • 1
  • D. Varrazzo
    • 3
  1. 1.Dipartimento di Scienze Matematiche ed Informatiche “R. Magari”Università di SienaItaly
  2. 2.Department of Computer ScienceUniversity of Southern CaliforniaUSA
  3. 3.Dipartimento di Biologia MolecolareUniversità di SienaItaly

Personalised recommendations