Benchmark testing of simulated annealing, adaptive random search and genetic algorithms for the global optimization of bioprocesses

  • R. Oliveira
  • R. Salcedo
Conference paper


This paper studies the global optimisation of bioprocesses employing model-based dynamic programming schemes. Three stochastic optimisation algorithms were tested: simulated annealing, adaptive random search and genetic algorithms. The methods were employed for optimising two challenging optimal control problems of fed-batch bioreactors. The main results show that adaptive random search and genetic algorithms are superior at solving these problems than the simulated annealing based method, both in accuracy and in the number of function evaluations.


Genetic Algorithm Simulated Annealing Dynamic Optimization Stochastic Algorithm Material Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Banga, J. R., E. Balsa-Canto, C. Moles and A. A. Alonso (2003). Dynamic optimization of bioreactors: a review, Proceedings INSA, Part A, nos. 3&4, May&July, 257.MathSciNetGoogle Scholar
  2. [2]
    Martinez, E. C. And J. A. Wilson (2003). Evolutionary optimization of batch process systems using imperfect models, Proceedings INSA, Part A, nos. 3&4, May&July, 403.MathSciNetGoogle Scholar
  3. [3]
    Salcedo, R. L., R. P. Lima and M. F. Cardoso (2003). Simulated annealing for the global optimization of chemical processes, Proceedings INSA, Part A, nos. 3&4, May&July, 359.MathSciNetGoogle Scholar
  4. [4]
    Lima, R. M., G. François, B. Srinivasan and R. L. Salcedo (2004). Dynamic optimization of batch emulsion polymerization using MSIMPSA, a simulated-annealing-based algorithm, Ind. Eng. Chem. Res., 43(24), 7796.CrossRefGoogle Scholar
  5. [5]
    Salcedo, R., M. J. Gonçalves and S. Feyo de Azevedo (1990). An Improved Random-Search Algorithm for Non-Linear Optimization, Comp. Chem. Engng., 14(10), 1111.CrossRefGoogle Scholar
  6. [6]
    Salcedo, R. L. (1992). Solving Non-Convex NLP and MINLP Problems with Adaptive Random-Search, Ind. Eng. Chem. Res., 31(1), 262.CrossRefGoogle Scholar
  7. [7]
    Cardoso M.F., R.L. Salcedo and S.F. de Azevedo (1996). The simplex-simulated annealing approach to continuous non-linear optimization, Computers Chem. Engng., 20(9), 1065.CrossRefGoogle Scholar
  8. [8]
    Nelder J.A. and R. Mead (1965). A simplex method for function minimization, Comput. J., 7, 308.MATHGoogle Scholar
  9. [9]
    Press W.H. and S.A. Teukolsky (1991). Simulated annealing optimization over continuous spaces, Computers in Physics, 5(4), 426.Google Scholar
  10. [10]
    Cardoso M.F.; Salcedo, R.L.; Feyo de Azevedo, S.; Barbosa, D. (1997). A Simulated Annealing Approach to the Solution of MINLP Problems, Comp. Chem. Engng. 21(12), 1349.CrossRefGoogle Scholar
  11. [11]
    Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.Google Scholar
  12. [12]
    Carroll, D. L. (1996). Chemical Laser Modeling with Genetic Algorithms, AIAA J., Vol. 34(2), 338.CrossRefGoogle Scholar
  13. [13]
    Park, S. And Ramirez, W. F. (1988). Optimal Production of Secreted Protein in Fed-Batch Reactors, aiche Journal, 34(9), 1550.CrossRefGoogle Scholar
  14. [14]
    Lee, J. And Ramirez, W.F. (1994) Optimal fed-batch control of induced foreign protein-production by recombinant bacteria, aiche Journal, 40(5), 899.CrossRefGoogle Scholar
  15. [15]
    Tholudur, Arun and Ramirez, W. Fred (1996) Optimization of fed-batch bioreactors using neural network parameter function models, Biotechenol. Prog., 12, 302.CrossRefGoogle Scholar
  16. [16]
    Carrasco E.F. and Banga J.R. (1997) Dynamic optimization of batch reactors using adaptive stochastic algorithms, Ind. Eng. Chem. Res., 36(11), 5047.CrossRefGoogle Scholar
  17. [17]
    Costa, L., P. Oliveira (2001). Evolutionary algorithms approach to the solution of mixed integer nonlinear programming problems. Comput. Chem. Eng., 25, 257.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • R. Oliveira
    • 1
  • R. Salcedo
    • 2
  1. 1.REQUIMTE/CQFB Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations