Skip to main content

A Special Class of Additive Cyclic Codes for DNA Computing

  • Conference paper
Adaptive and Natural Computing Algorithms

Abstract

In this paper, we study a special class of nonbinary additive cyclic codes over GF(4) which we call reversible complement cyclic codes. Such codes are suitable for constructing codewords for DNA computing. We develop the theory behind constructing the set of generator polynomials for these codes. We study, as an example, all length—7 codes over GF(4) and list those that have the largest minimum Hamming distance and largest number of codewords.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman (1994), “Molecular Computation of Solutions to Combinatorial Problems,” Science, v. 266, 1021–1024.

    Google Scholar 

  2. R. Deaton, R. Murphy, M. Garzon, D. R. Franceschetti, S. E. Stevens (1998), “Good encoding for DNA-based solutions to combinatorial problems,” Proceedings of DNA-Based Computers II, Princeton. In AMS DIMACS Series, vol. 44, L. F. Landweber, E, Baum Eds., 247–258.

    Google Scholar 

  3. P. Gaborit and O. King, “Linear constructions for DNA codes,” Preprint.

    Google Scholar 

  4. M. Garzon, P. Neathery, R. Deaton, M. Garzon, R. C. Murphy, D. R. Franceschetti, S. E. Stevens Jr. (1997), “A new metric for DNA computing” Second Annual Genetic Programming Conference, Stanford, CA, 472–478.

    Google Scholar 

  5. M. Garzon, R. Deaton, L. F. Nino, S. E. Stevens Jr., M. Wittner (1998), “Genome encoding for DNA computing,” Proceedings of the Third Genetic Programming Conference, Madison, WI, 684–690.

    Google Scholar 

  6. L. Kari, R. Kitto, G. Thierrin (2003), “Codes, involutions, and DNA encoding,” Lecture Notes in Computer Science 2300, Springer Verlag, 376–393.

    Google Scholar 

  7. O. King (2003), “Bounds for DNA codes with constant GC-content,” The Electronic Journal of Combinatorics, vol. 10, 1–13.

    Google Scholar 

  8. A. Marathe, A. E. Condon and R. M. Corn (2001), “On Combinatorial DNA word design,” Journal of Computational Biology, vol.8, 201–220.

    Article  Google Scholar 

  9. A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith and R. M. Corn (1997), “Demonstration of a word design strategy for DNA computing on surfaces,” Nucleic Acids Research, vol. 25, 4748–4757.

    Article  Google Scholar 

  10. V. Rykov, A. J. Macula, D. Torney, P. White (2001), “DNA sequences and quaternary cyclic codes,” IEEE ISIT 2001, Washington, DC, June 24–29, pp.248–248.

    Google Scholar 

  11. F. J. MacWilliams and N. J. A. Sloane (1997), The Theory of Error-Correcting Codes, Ninth Impression, North-Holland, Amsterdam.

    Google Scholar 

  12. A. R. Calderbank, E. M. Rains, P. W. Shor, and Neil J. A. Sloane (1998), “Quantum error correction via codes over GF(4),” IEEE Trans. Info. Theory, vol. 44, no. 4, 1369–1387.

    Article  MathSciNet  Google Scholar 

  13. J. L. Massey (1964), “Reversible Codes,” Information and Control vol. 7, pp. 369–380.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Abualrub and R. Oehmke (2003), “On the generators of Z4 cyclic codes of Length 2e,” IEEE Trans. Info. Theory, vol. 49, no. 9, pp. 2126–2133.

    Article  MathSciNet  Google Scholar 

  15. T. Abualrub and A. Ghrayeb (submitted 2004), “On the construction of Cyclic Codes for DNA Computing,”.

    Google Scholar 

  16. D. C. Tublan, “Tables of DNA codes,” http://www.cs.ubs.ca/~dctulpan/papers/dna8/tables/index.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this paper

Cite this paper

Abualrub, T., Ghrayeb, A., Zeng, X.N. (2005). A Special Class of Additive Cyclic Codes for DNA Computing. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds) Adaptive and Natural Computing Algorithms. Springer, Vienna. https://doi.org/10.1007/3-211-27389-1_68

Download citation

  • DOI: https://doi.org/10.1007/3-211-27389-1_68

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24934-5

  • Online ISBN: 978-3-211-27389-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics