Redundant Quantum Arithmetic

  • António Pereira
  • Rosália Rodrigues
Conference paper


Redundant number systems have been widely used in the speedup of classical digital arithmetic. This work introduces the concept of redundancy in the quantum computation field. We show that a constant depth quantum adder circuit is attainable under this new framework.


Number System Quantum Gate Redundancy Index Digital Arithmetic Redundant Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Phatak, D. S., Goff, T., and Koren, I. (2001) Constant-time addition and simultaneous format conversion based on redundant binary representations. IEEE Trans. Comput. 50: 1267–1278CrossRefGoogle Scholar
  2. [2]
    Vedral, V., Barenco, A., and Ekert, A. (1995) Quantum networks for elementary arithmetic operations. Scholar
  3. [3]
    Gossett, P. (1998) Quantum carry-save arithmetic. Scholar
  4. [4]
    Draper, T. G. (2000) Addition on a quantum computer. Scholar
  5. [5]
    Draper, T. G., et al (2004) A logarithmic-depth quantum carry-lookahead adder. Scholar
  6. [6]
    Parhami, B. (1990) Generalized signed-digit number systems: A unifying framework for redundant number representations. IEEE Trans. Comput. 39: 89–98CrossRefGoogle Scholar
  7. [7]
    Pereira, A. and Rodrigues, R. (2004) An \(\mathcal{O}\)(1) adder for quantum arithmetic. Cadernos de Matemática, Dep. de Matemática da Univ. de Aveiro, CM04/I-13Google Scholar
  8. [8]
    Daboul, J., Wang, X., and Sanders, B. C. (2003) Quantum gates on hybrid qudits. Journal of Physics A 36: 2525–2536MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kitaev, A. Y., Shen, A., and Vyalyi, M. (2002) Classical and quantum computation. Graduate Studies in Mathematics 47, American Mathematical SocietyGoogle Scholar
  10. [10]
    Shor, P. W. (1995) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, Scholar
  11. [11]
    Nielsen, M. A. and Chuang, I. L. (2000) Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UKGoogle Scholar
  12. [12]
    Rodrigues, M. R. D., Zurawski, J. H. P., and Gosling, J. B. (1981) Hardware evaluation of mathematical functions. IEE Proc. 128: 155–164Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • António Pereira
    • 1
  • Rosália Rodrigues
    • 1
  1. 1.Department of MathematicsUniversity of AveiroPortugal

Personalised recommendations