Advertisement

Estimating the distribution in an EDA

  • S. Shakya
  • J. McCall
  • D. F. Brown

Abstract

This paper presents an extension to our work on estimating the probability distribution by using a Markov Random Field (MRF) model in an Estimation of Distribution Algorithm (EDA) [1]. We propose a method that directly samples a MRF model to generate new population. We also present a new EDA, called the Distribution Estimation Using MRF with direct sampling (DEUMd), that uses this method, and iteratively refines the probability distribution to generate better solutions. Our experiments show that the direct sampling of a MRF model as estimation of distribution provides a significant advantage over other techniques on problems where a univariate EDA is typically used.

Keywords

Markov Random Field Joint Probability Distribution Fitness Evaluation Direct Sampling Distribution Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. [1]
    Shakya, S., McCall, J., Brown D. (2004). Updating the probability vector using MRF technique for a Univariate EDA. In proceedings of STAIRS 2004, IOS press, pp. 15–25.Google Scholar
  2. [2]
    Mühlenbein, H., Paass, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. Voigt, H.-M et. El.(eds.) PPSN IV, LNCS 1141, Springer, pp. 178–187.Google Scholar
  3. [3]
    Larra\({\ddot n}\)aga P., and Lozano J. A. (2001) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2001.Google Scholar
  4. [4]
    Pelikan, M., (2002). Bayesian optimization algorithm: From single level to hierarchy. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.Google Scholar
  5. [5]
    Baluja, S. (1994). Population based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMUCS94163, Pittsburgh, PA.Google Scholar
  6. [6]
    Li, S. Z. (1995). Markov random field modeling in computer vision. ISBN:4-431-70145-l, Springer-Verlag, 1995.Google Scholar
  7. [7]
    Brown D.F., Garmendia-Doval, A.B., McCall, J.A.W. (2001). Markov Random Field Modelling of Royal Road Genetic Algorithms. Evolution Artificielle 2001, LNCS 2310, pp. 65–78, Springer Verlag 2002.Google Scholar
  8. [8]
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P (1993). Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1993Google Scholar
  9. [9]
    Lawrence Davis (1991), editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.Google Scholar
  10. [10]
    Hoos, H. H. and Stutzle, T. (1999). Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artificial Intelligence, 112(1–2):213.232, 1999.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • S. Shakya
    • 1
  • J. McCall
    • 1
  • D. F. Brown
    • 1
  1. 1.School of ComputingThe Robert Gordon UniversityAberdeenUK

Personalised recommendations