Fluticasone Propionate Pigment Cell Vitiligo Patient Tyrosinase Related Protein Dihydropteridine Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronoff S (1965) Catalase: kinetics of photo-oxidation. Science 150: 72–73PubMedGoogle Scholar
  2. Austin LM, Boissy RE (1995) Mammalian tyrosinase related protein-1 is recognised by autoantibodies from vitiliginous Smyth chickens. Am J Pathol 146:1529–1541PubMedGoogle Scholar
  3. Baharav E, Merimski O, Shoenfeld Y, Zigelman R, Gilbrud B, Yecheskel G, Youinou P, Fishman P (1996) Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol 105: 84–88CrossRefPubMedGoogle Scholar
  4. Beazley WD, Gaze DC, Panske A, Panzig E, Schallreuter KU (1999) Serum selenium levels and glutathione peroxidase activities in vitiligo. Br J Dermatol 141: 301–303CrossRefPubMedGoogle Scholar
  5. Bhawan J, Bhutani LK (1983) Keratinocyte damage in vitiligo. J Cutaneous Path 10: 207–212Google Scholar
  6. Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiences. J Inherit Metab Dis 19: 8–14CrossRefPubMedGoogle Scholar
  7. Boissy R, Liu YY, Medrano EE, Nordlund JJ (1991) Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalisation in long term cultures of melanocytes from vitiligo patients. J Invest Dermatol 97: 395–404CrossRefPubMedGoogle Scholar
  8. Boissy RE, Sakai C, Zhao H, Kobayashi T, Hearing VJ (1998) Human tyrosinase related protein-1 (TRP-1). Exp Dermatol 7: 198–204CrossRefPubMedGoogle Scholar
  9. Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Res 17: 208–14CrossRefPubMedGoogle Scholar
  10. Calanchini-Postizzi E, Frenk E (1987) Long-term actinic damage in sun-exposed vitiligo and normally pigmented skin. Dermatologica 174: 266–71PubMedGoogle Scholar
  11. Casp CB, She JX, McCormack WT (2002) Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 15: 62–6CrossRefPubMedGoogle Scholar
  12. Cui J, R Harning, M Henn, J-C Bystryn (1992) Identification of pigment cells antigens defined by vitiligo antibodies. J Invest Dermatol 98: 162–165CrossRefPubMedGoogle Scholar
  13. Cui J, Arita Y, Bystryn J-C (1993) Cytolytic antibodies to melanocytes in vitiligo. J Invest Dermatol 100: 812–815CrossRefPubMedGoogle Scholar
  14. Cui J, Chen D, Misfeldt ML, Swinfard RW, Bystryn J-C (1995) Antimelanoma antibodies in swine with spontaneously regressing melanoma. Pigment Cell Res 8: 60–63PubMedGoogle Scholar
  15. Darr D, Fridovich I (1994) Free radicals in cutaneous biology. J Invest Dermatol 102: 671–675CrossRefPubMedGoogle Scholar
  16. Davis MD, Ribeiro P, Tipper J, Kaufman S (1992) 7-Tetrahydrobiopterin, a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydrolases. Proc Natl Acad Sci USA 89: 10108–10113Google Scholar
  17. De la Fuente-Fernandez R (1997) Mutations in GTP-cyclohydrolase I gene and vitiligo. Lancet 350: 640CrossRefGoogle Scholar
  18. Diehle J (2004) Med Thesis, University of Hamburg, GermanyGoogle Scholar
  19. Galbraith GM, Miller D, Emerson DL (1988) Western blot analysis of serum antibody reactivity with human melanoma cell antigens in alopecia areata and vitiligo. Clin Immunol Immunopathol 48: 317–324CrossRefPubMedGoogle Scholar
  20. Grimes PE, Sevall JS, Vojdani A (1996) Cytomegalovirus DNA identified in skin biopsy specimens of patients with vitiligo. J Am Acad Dermatol 1996; 35:21–26CrossRefPubMedGoogle Scholar
  21. Grimes PE, Elkadi T, Sanders, J (1999) Epstein-Barr virus infection in patients with vitiligo (abstr). J Invest Dermatol 112: 604Google Scholar
  22. Halaban R, Moellmann GE (1990) Murine and human b-locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Nat Acad Sci USA 1990 87:4809–4813PubMedGoogle Scholar
  23. Hamzavi I, Jain H, Mclean D, Shapiro J, Zeng H, Lui H (2004) Parametric modelling of narrowband UVB phototherapy for vitiligo using a novel quantitative tool: the Vitiligo Area Scoring Index. Arch Dermatol 140: 677–83CrossRefPubMedGoogle Scholar
  24. Harning R, Cui J, Bystryn J-C (1991) Relation between the incidence and level of pigment cell antibodies and disease activity in vitiligo. J Invest Dermatol 97: 1078–1080CrossRefPubMedGoogle Scholar
  25. Hasse S, Gibbons NC, Rokos H, Marles LK, Schallreuter KU (2004) Perturbed 6-tetrahydrobi-opterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress. J Invest Dermatol 122: 307–313CrossRefPubMedGoogle Scholar
  26. Herrath MG, Oldstone MB (1996) Virus induced autoimmune disease. Curr Opin Immunol 8:878–885CrossRefPubMedGoogle Scholar
  27. Jimbow K, Chen H, Park JS, Thomas P (2001) Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase related protein in vitiligo. Br J Dermatol 144: 55–65PubMedGoogle Scholar
  28. Kemp EH, Gawkrodger DJ, MacNeil S, Watson PF, Weetman AP (1997a) Detection of tyrosinase autoantibodies in vitiligo patients using 35S-labelled recombinant human tyrosinase in a radioimmunoassay. J Invest Dermatol 109: 69–73CrossRefPubMedGoogle Scholar
  29. Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP (1997b) Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2). Clin Exp Immunol 109:495–500CrossRefPubMedGoogle Scholar
  30. Kemp EH, Waterman, Gawkrodger DJ, Watson PF, Weetman AP (1998) Autoantibodies to tyrosinase-related protein-1 (TRP-1) detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 139: 798–805CrossRefPubMedGoogle Scholar
  31. Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP (1999) Identification of epitopes on tyrosinase which are recognised by autoantibodies from patients with vitiligo. J Invest Dermatol 113: 267–271CrossRefPubMedGoogle Scholar
  32. Kwon BS (1993) Pigmentation genes: the tyrosinase gene family and the pmell7 gene family. J Invest Dermatol 100: 134S–140SCrossRefPubMedGoogle Scholar
  33. Laihia JK, Jansen CT (1997) Upregulation of human epidermal Langerhans cell B7-1 and B7-2 costimulatory molecules in vivo by solar stimulating irradiation. Eur J Immunol 27:984–989PubMedGoogle Scholar
  34. Laskin JD, Piccinini LA (1986) Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma. J Biol Chem 261: 16626–16635PubMedGoogle Scholar
  35. LePoole IC, Das PK, van den Wijngaard RM, Bos JD, Westerhof W (1993a) Review of the etiopathomechanism of vitiligo: A convergence theory. Exp Dermatol 2: 146–153Google Scholar
  36. LePoole IC, van dan Wijngaard RM, Westerhof W, Dutrieux RP, Das PK (1993b) Presence or absence of melanocytes in vitiligo lesions: an immunohistochemical investigation. J Invest Dermatol 100: 816–822CrossRefPubMedGoogle Scholar
  37. LePoole C, Wijngaard Van den, Smit NPM, Oosting J, Westerhof W, Pavel S (1994) Catechol-O-methyl transferase in vitiligo. Arch Dermatol Res 286: 81–86CrossRefPubMedGoogle Scholar
  38. Le Poole IC, Wankowicz-Kalinska A, van der Wijngaard RMJGJ, Nickoloff BJ, Das PK (2004) Autoimmune aspects of depigmentation in vitiligo. J Invest Dermatol Symp Proc 9: 68–72CrossRefGoogle Scholar
  39. Manga P, Sato K, Ye L, Beerman F, Lamoreux ML, Orlow SJ (2000). Mutational analysis of the modulation of tyrosinase by tyrosinase related proteins 1 and 2 in vitro. J Pigment Cell Res 13: 364–374CrossRefGoogle Scholar
  40. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109: 310–313CrossRefPubMedGoogle Scholar
  41. Marks DB, Marks AD, Smith CM (1996) Oxygen metabolism and oxygen toxicity. In: Basic Medical Biochemistry: A Clinical Approach. Baltimore: Williams and Wilkins 327–340Google Scholar
  42. Marles LK, Peters EM, Tobin DJ, Hibberts NA, Schallreuter KU (2003) Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol 12: 61–70PubMedGoogle Scholar
  43. Medrano EE and Nordlund JJ (1990) Successful culture of adult human melanocytes obtained from normal and vitiligo donors. J Invest Dermatol 95: 441–445PubMedGoogle Scholar
  44. Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982) Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J Invest Dermatol 79: 321–330CrossRefPubMedGoogle Scholar
  45. Moretti S, Spallanzani A, Amato L et al. (2002) New insights into the pathogenesis of vitilgo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15: 87–92CrossRefPubMedGoogle Scholar
  46. Morrone A, Picardo M, De Luca C, Terminali O, Passi S, Ippolito F (1992) Catecholamines and vitiligo. Pigment Cell Res 5: 58–62PubMedGoogle Scholar
  47. Morse SS, Sakaguchi N, Sakaguchi S (1999) Virus and autoimmunity: induction of autoimmune disease in mice by mouse T-lymphotropic virus (MTLV) destroying CD4 and T cells. J Immunol 162: 5309–5316PubMedGoogle Scholar
  48. Naughton GK, Eisinger M, Bystryn J-C (1983a) Antibodies to normal human melanocytes in vitiligo. J Exp Med 158: 246–251PubMedGoogle Scholar
  49. Naughton GK, Eisinger M, Bystryn J-C (1983b) Detection of antibodies to melanocytes in vitiligo by specific immunoprecipitation. J Invest Dermatol 81: 540–542CrossRefPubMedGoogle Scholar
  50. Naughton GK, Reggiardo MD, Bystryn J-C (1986a) Correlation between vitiligo antibodies and extent of depigmentation in vitiligo. J Am Acad Dermatol 15: 978–981PubMedGoogle Scholar
  51. Naughton GK, Mahaffey M, Bystryn J-C (1986b) Antibodies to surface antigens of pigment cells in animals with vitiligo. Proc Soc Exp Biol Med 181: 423–426PubMedGoogle Scholar
  52. Nordlund JJ, Ortonne JP (1992) Vitiligo and depigmentation. Curr Prob Dermatol 4: 3–30CrossRefGoogle Scholar
  53. Nordlund JJ, Boissy RE, Hearing VJ, King RA, Ortonne JP (eds) (1998) The pigmentary system. Physiology and Pathophysiology. Oxford University Press, OxfordGoogle Scholar
  54. Norris DA, Kissinger RM, Naughton GK, Bystryn J-C (1998) Evidence for immunologic mechanisms in human vitiligo: patients’ sera induce damage to human melanocytes in vitro by complement-mediated damage and antibody-dependent cellular toxicity. J Invest Dermatol 90: 783–789CrossRefGoogle Scholar
  55. Okamoto T, Irie RF, Fujii S, Huang SKS, Nizze AJ, Morton DL, Hoon DSB (1998) Anti-tyrosinase related protein-2 immune response in vitiligo patients and melanoma patients receiving active-specific immunotherapy. J Invest Dermatol 111: 1034–1039CrossRefPubMedGoogle Scholar
  56. Orlow SJ, Boissy RE, Moran D, Pifka-Hinst S (1993) Subcellular distribution of tyrosinase and tyrosinase related protein 1: Implications for melanosomal biogenesis. J Invest Dermatol 100:55–64CrossRefPubMedGoogle Scholar
  57. Ortonne JP, Bose SK (1993) Vitiligo: Where do we stand? Pigment Cell Res 8: 61–72Google Scholar
  58. Rokos H, Beazley WD, Schallreuter KU (2002) Oxidative stress in vitilgo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem Biophys Res Commun 292:805–11CrossRefPubMedGoogle Scholar
  59. Rokos H, Moore J, Hasse S, Gillbro JM, Wood JM, Schallreuter KU (2004) In vivo Fluorescence Excitation Spectroscopy and in vivo FT-Raman Spectroscopy in human skin: Evidence of H2O2 oxidation of epidermal albumin in patients with vitiligo. J Raman Spectrosc 35: 125–130CrossRefGoogle Scholar
  60. Rutault K, Alderman C, Chain BM, Katz DR (1999) Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 26: 232–238PubMedGoogle Scholar
  61. Schallreuter KU, Pittelkow MR (1988) Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin. Arch Dermatol Res 280: 137–139CrossRefPubMedGoogle Scholar
  62. Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97: 1081–1085CrossRefPubMedGoogle Scholar
  63. Schallreuter KU, Wood JM, Pittelkow MR, Gütlich M, Lemke KR, Rödl W, Swanson NN, Hitzemann K, Ziegler I (1994a) Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 263: 1444–1446PubMedGoogle Scholar
  64. Schallreuter KU, Wood JM, Ziegler I, Lemke KR, Pittelkow MR, Lindsey NJ, Gütlich M (1994b) Defective tetrahydrobiopterin and catecholamine biosynthesis in the depigmentation disorder vitiligo. Biochim Biophys Acta 1226: 181–192PubMedGoogle Scholar
  65. Schallreuter KU, Büttner G, Pittelkow MR, Wood JM, Swanson NN, Körner C (1994c) Cytotoxicity of 6-biopterin to human melanocytes. Biochem Biophys Res Communs 204:43–48Google Scholar
  66. Schallreuter KU, Wood JM, Lemke KR, Levenig C (1995a) Treatment of vitiligo with a topical application of pseudocatalase and calcium in combination with short-term UVB exposure: a case study on 33 patients. Dermatol 190: 223–229Google Scholar
  67. Schallreuter KU, Lemke KR, Pittelkow MR, Wood JM, Körner C, Malik R (1995b) Catecholamines and keratinocyte differentiation. J Invest Dermatol 104: 953–957CrossRefPubMedGoogle Scholar
  68. Schallreuter KU, Wood JM, Pittelkow MR, Büttner G, Swanson NN, Körner C, Ehrke C (1996a) Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 288: 14–18CrossRefPubMedGoogle Scholar
  69. Schallreuter KU, Pittelkow MR, Swanson NN (1996b) Defective calcium transport in vitiliginous melanocytes. Arch Dermatol Res 288: 11–13CrossRefPubMedGoogle Scholar
  70. Schallreuter KU, Blau N (1997) GTP-cyclohydrolase and vitiligo. Lancet 350: 1254CrossRefGoogle Scholar
  71. Schallreuter KU, Zschiesche M, Moore J, Panske A, Hibberts NA, Herrmann FH, Metelmann HR, Sawatzki J (1998) In vivo evidence for compromised phenylalanine metabolism in vitiligo. Biochem Biophys Res Commun 243: 395–399CrossRefPubMedGoogle Scholar
  72. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA (1999a) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Invest Dermatol Symp Proc4: 91–96Google Scholar
  73. Schallreuter KU (1999b). Successful treatment of oxidative stress in vitiligo. Skin Pharmacol Appl Skin Physiol 12: 132–138CrossRefPubMedGoogle Scholar
  74. Schallreuter KU, Wood JM (1999c) The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem Biophys Res Commun 262: 423–428CrossRefPubMedGoogle Scholar
  75. Schallreuter KU, Moore J, Wood JM, Beazley WD, Peters EMJ, Marles LK, Behrens-Williams SC, Dummer R, Blau N, Thöny B (2001) Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: Identification of a general mechanism in regulation of all 6BH4, dependent processes? J Invest Dermatol 116: 167–74CrossRefPubMedGoogle Scholar
  76. Schallreuter KU, Tobin DJ, Panske A (2002) Decreased photodamage and low incidence of non-melanoma skin cancer in 136 sun-exposed caucasian patients with vitiligo. Dermatology 204: 194–201CrossRefPubMedGoogle Scholar
  77. Schallreuter KU, Behrens-Williams S, Khaliq TP et al. (2003) Increased epidermal functioning wild-type p53 expression in vitiligo. Exp Dermatol 12: 268–277CrossRefPubMedGoogle Scholar
  78. Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM (2004) Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 315: 502–508CrossRefPubMedGoogle Scholar
  79. Shimizu S, Shiota K, Yamamoto S et al. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases ntric oxide synthase activity in vascular endothelial cells. Free Radic Biol Med 34: 1343–52CrossRefPubMedGoogle Scholar
  80. Song Y, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N (1994) The role of tyrosinase in autoimmune vitiligo. Lancet 344: 1049–1052PubMedGoogle Scholar
  81. Spritz RA, Gowan K, Bennett DC, Fain PR (2004) Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet 74: 188–91CrossRefPubMedGoogle Scholar
  82. Stark JM(1998) Immunological adjuvance of metabolic origin: oxidative stress, postulated impaired function of thiol proteases and immunogenicity. Scand J Immunol 48: 475–479Google Scholar
  83. Tobin DJ, Swanson NN, Pittelkow MR, Peters EMJ, Schallreuter KU (2000) Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 2000 191: 407–416CrossRefPubMedGoogle Scholar
  84. Vile GF (1997) Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett 412: 70–74CrossRefPubMedGoogle Scholar
  85. Westerhof W, Nieuweboer-Krobotova L, Mulder PG, Glazenburg EJ (1999) Left-right comparison study of the combination of fluticasone propionate and UVA vs either fluticasone propionate or UVA alone for the long term treatment of vitiligo. Arch Dermatol 135:1061–6CrossRefPubMedGoogle Scholar
  86. Wood JM, Schallreuter KU (1991) Studies on the reactions between human tyrosinase, superoxide anion, hydrogen peroxide and thiols. Biochim Biophys Acta 1074: 378–385PubMedGoogle Scholar
  87. Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, Wortsman J, Tosk J (1999) What’s the use of generating melanin? Exp Dermatol 8: 133–164Google Scholar
  88. Würfel F, Panske A, Schallreuter KU (2000) Are viral infections a possible cause for the manifestation of vitiligo? J Pigment Cell Res 13: 404Google Scholar
  89. Xie Z, Chen D, Jiao D, Bystryn J-C (1999) Vitiligo antibodies are not directed to tyrosinase. Arch Dermatol 135: 417–422CrossRefPubMedGoogle Scholar
  90. Yohn JJ, Norris DA, Yrastorza G, Buno IJ, Leff JA, Hake SS, Repine JE (1991) Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes and melanocytes. J Invest Dermatol 97: 405–409CrossRefPubMedGoogle Scholar
  91. Yokoyama K, Suzuki H, Yasumoto K, Tomita Y, Shibahara S (1994) Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim Biophys Acta 1217: 317–321PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  • Karin U. Schallreuter

There are no affiliations available

Personalised recommendations