Pathogenesis of Autoimmune Disease

  • Martin Röcken
  • Tilo Biedermann


Mast Cell Autoimmune Disease Major Histocompatibility Complex Major Histocompatibility Complex Class Bullous Pemphigoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, J. R., Kelley, S. L., Hayes, E., Kikuchi, T., Brown, M. J., Kang, S., Lebwohl, M. G., Guzzo, C. A., Jegasothy, B. V., Linsley, P. S., and Krueger, J. G. (2000). Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681–694CrossRefPubMedGoogle Scholar
  2. Ackermann, L., and Harvima, I. T. (1998). Mast cells of psoriatic and atopic dermatitis skin are positive for TNF-alpha and their degranulation is associated with expression of ICAM-1 in the epidermis. Arch. Dermatol. Res. 290, 353–359CrossRefPubMedGoogle Scholar
  3. Adorini, L., and Sinigaglia, F. (1997). Pathogenesis and immunotherapy of autoimmune diseases. Immunol. Today 18, 209–211CrossRefPubMedGoogle Scholar
  4. Akdis, C. A., Joss, A., Akdis, M., Faith, A., and Blaser, K. (2000). A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. Faseb J. 14, 1666–1668PubMedGoogle Scholar
  5. Albert, M. L., Sauter, B., and Bhardwaj, N. (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89CrossRefPubMedGoogle Scholar
  6. Alferink, J., Tafuri, A., Vestweber, D., Hallmann, R., Hammerling, G. J., and Arnold, B. (1998). Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking. Science 282, 1338–1341CrossRefPubMedGoogle Scholar
  7. Amagai, M., Klaus-Kovtun, V., and Stanley, J. R. (1991). Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 67, 869–877CrossRefPubMedGoogle Scholar
  8. Arnold, B., Schonrich, G., and Hammerling, G. J. (1993). Multiple levels of peripheral tolerance. Immunol. Today 14, 12–14PubMedGoogle Scholar
  9. Austin, L. M., Ozawa, M., Kikuchi, T., Walters, I. B., and Krueger, J. G. (1999). The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113, 752–759CrossRefPubMedGoogle Scholar
  10. Bachmaier, K., Neu, N., de la Maza, L. M., Pal, S., Hessel, A., and Penninger, J. M. (1999). Chlamydia infections and heart disease linked through antigenic mimicry. Science 283, 1335–1339CrossRefPubMedGoogle Scholar
  11. Banchereau, J., Bazan, F., Blanchard, D., Briere, F., Galizzi, J. P., van Kooten, C., Liu, Y. J., Rousset, F., and Saeland, S. (1994). The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922CrossRefPubMedGoogle Scholar
  12. Banchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245–252PubMedGoogle Scholar
  13. Bendelac, A., Carnaud, C., Boitard, C., and Bach, J. F. (1987). Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med. 166, 823–832CrossRefPubMedGoogle Scholar
  14. Berg, P. A., Klein, R., and Rocken, M. (1997). Cytokines in primary biliary cirrhosis. Semin. Liver Dis. 17, 115–123PubMedGoogle Scholar
  15. Biedermann, T., Kneilling, M., Mailhammer, R., Maier, K., Sander, C. A., Kollias, G., Kunkel, S. L., Hultner, L., and Rocken, M. (2000). Mast Cells Control Neutrophil Recruitment during T Cell-mediated Delayed-type Hypersensitivity Reactions through Tumor Necrosis Factor and Macrophage Inflammatory Protein 2. J. Exp. Med. 192, 1441–1452CrossRefPubMedGoogle Scholar
  16. Biedermann, T., Mailhammer, R., Mai, A., Sander, C., Ogilvie, A., Brombacher, F., Maier, K., Levine, A. D., and Röcken M. (2001a). Reversal of established delayed type hypersensitivity reactions following therapy with IL-4 or antigen-specific Th2 cells. Eur. J. Immunol. 31, 1582–1591CrossRefPubMedGoogle Scholar
  17. Biedermann, T., Zimmermann, S., Himmelrich, H., Gumy, A., Egeter, O., Sakrauski, A. K., Seegmuller, I., Voigt, H., Launois, P., Levine, A. D., Wagner, H., Heeg, K., Louis, J. A., and Röcken, M. (2001b) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat. Immunol. 2, 1054–1060CrossRefPubMedGoogle Scholar
  18. Biedermann, T., Röcken, M., and Carballido, J. M. (2004). TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J. Invest. Dermatol. Symp. Proc. 9, 5–14CrossRefGoogle Scholar
  19. Bischoff, S. C., Lorentz, A., Schwengberg, S., Weier, G., Raab, R., and Manns, M. P. (1999). Mast cells are an important cellular source of tumour necrosis factor alpha in human intestinal tissue. Gut 44, 643–652PubMedGoogle Scholar
  20. Blackman, M., Kappler, J., and Marrack, P. (1990). The role of the T cell receptor in positive and negative selection of developing T cells. Science 248, 1335–1341PubMedGoogle Scholar
  21. Bluestone, J. A., and Tang, Q. (2004). Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci U S A. pnas.0405234101Google Scholar
  22. Bonomo, A., and Matzinger, P. (1993). Thymus epithelium induces tissue-specific tolerance. J. Exp. Med. 177, 1153–1164CrossRefPubMedGoogle Scholar
  23. Boulé, M. W., Broughton, C., Mackay, F., Akira, S., Marshak-Rothstein, A., and Rifkin, I.R. (2004). Toll-like receptor 9-dependent and-independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199; 1631–1640CrossRefPubMedGoogle Scholar
  24. Bouneaud, C., Kourilsky, P., and Bousso, P. (2000). Impact of Negative Selection on the T Cell Repertoire Reactive to a Self-Peptide. A Large Fraction of T Cell Clones Escapes Clonal Deletion. Immunity 13, 829–840CrossRefPubMedGoogle Scholar
  25. Budinger, L., Borradori, L., Yee, C., Eming, R., Ferencik, S., Grosse-Wilde, H., Merk, H. F., Yancey, K., and Hertl, M. (1998). Identification and characterization of autoreactive T cell responses to bullous pemphigoid antigen 2 in patients and healthy controls. J. Clin. Invest. 102, 2082–2089PubMedGoogle Scholar
  26. Chen, R., Diaz, L., Giudice, G., and Liu, Z. (2000). The role of C5a in mast cell activation during subepidermal blistering in experimental bullous pemphigoid. J. Invest. Dermatol. 114 (A), 762Google Scholar
  27. Christophers, E. (1996). The immunopathology of psoriasis. Int. Arch. Allergy Immunol. 110, 199–206PubMedGoogle Scholar
  28. Chuang, T. Y., Stitle, L., Brashear, R., and Lewis, C. (1999). Hepatitis C virus and lichen planus: A case-control study of 340 patients. J. Am. Acad. Dermatol. 41, 787–789PubMedGoogle Scholar
  29. Degitz, K., and Röcken, M. (1997). Lichen ruber planus nach Hepatitis-B-Impfung. In Fortschritte der praktischen Dermatologie und Venerologie 1996, G. Plewig and B. Przybilla, eds. (Berlin Heidelberg New York: Springer), 426–427Google Scholar
  30. Ehl, S., Hombach, J., Aichele, P., Rulicke, T., Odermatt, B., Hengartner, H., Zinkernagel, R., and Pircher, H. (1998). Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763–774CrossRefPubMedGoogle Scholar
  31. Feldmann, M., Brennan, F. M., and Maini, R. N. (1996). Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440CrossRefPubMedGoogle Scholar
  32. Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336CrossRefPubMedGoogle Scholar
  33. Gautam, A. M., Lock, C. B., Smilek, D. E., Pearson, C. I., Steinman, L., and McDevitt, H. O. (1994). Minimum structural requirements for peptide presentation by major histocompatibility complex class II molecules: implications in induction of autoimmunity. Proc. Natl. Acad. Sci. U.S.A. 91, 767–771PubMedGoogle Scholar
  34. Gelbmann, C. M., Mestermann, S., Gross, V., Kollinger, M., Scholmerich, J., and Falk, W. (1999). Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut 45, 210–217PubMedGoogle Scholar
  35. Gerlach, J. T., Diepolder, H. M., Jung, M. C., Gruener, N. H., Schraut, W. W., Zachoval, R., Hoffmann, R., Schirren, C. A., Santantonio, T., and Pape, G. R. (1999). Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology 117, 933–941PubMedGoogle Scholar
  36. Ghoreschi, K., Thomas, P., Breit, S., Dugas, M., Mailhammer, R., Van Eden, W., Van Der Zee, R., Biedermann, T., Prinz, J., Mack, M., Mrowietz, U., Christophers, E., Schlondorff, D., Plewig, G., Sander, C. A., and Röcken, M. (2003). Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat. Med. 9, 40–46CrossRefPubMedGoogle Scholar
  37. Goldman, M., Druet, P., and Gleichmann, E. (1991). TH2 cells in systemic autoimmunity: insights from allogeneic diseases and chemically-induced autoimmunity. Immunol. Today 12, 223–227CrossRefPubMedGoogle Scholar
  38. Goodnow, C. C., Brink, R., and Adams, E. (1991). Breakdown of self-tolerance in anergic B lymphocytes. Nature 352, 532–536CrossRefPubMedGoogle Scholar
  39. Green, E. A., and Flavell, R. A. (2000). The temporal importance of TNFalpha expression in the development of diabetes. Immunity 12, 459–469CrossRefPubMedGoogle Scholar
  40. Groux, H., O’Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E., and Roncarolo, M. G. (1997). A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742PubMedGoogle Scholar
  41. Harrison, L. C., Honeyman, M. C., DeAizpurua, H. J., Schmidli, R. S., Colman, P. G., Tait, B. D., and Cram, D. S. (1993). Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet 341, 1365–1369CrossRefPubMedGoogle Scholar
  42. Hertl, M., Karr, R. W., Amagai, M., and Katz, S. I. (1998). Heterogeneous MHC II restriction pattern of autoreactive desmoglein 3 specific T cell responses in pemphigus vulgaris patients and normals. J. Invest. Dermatol. 110, 388–392CrossRefPubMedGoogle Scholar
  43. Hertl, M. (2000). Humoral and cellular autoimmunity in autoimmune bullous skin disorders. Int. Arch. Allergy Immunol. 122, 91–100CrossRefPubMedGoogle Scholar
  44. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A. H. (2000). Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222CrossRefPubMedGoogle Scholar
  45. Kalinski, P., Hilkens, C. M., Wierenga, E. A., and Kapsenberg, M. L. (1999). T-cell priming by type-land type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567CrossRefPubMedGoogle Scholar
  46. Katz, J. D., Benoist, C., and Mathis, D. (1995). T helper cell subsets in insulin-dependent diabetes. Science 268, 1185–1188PubMedGoogle Scholar
  47. Kisielow, P., Teh, H. S., Bluthmann, H., and von Boehmer, H. (1988). Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733CrossRefPubMedGoogle Scholar
  48. Kisielow, P., and von Boehmer, H. (1995). Development and selection of T cells: facts and puzzles. Adv. Immunol. 58, 87–209PubMedGoogle Scholar
  49. Kolb, H., Kolb-Bachofen, V., and Roep, B. O. (1995). Autoimmune versus inflammatory type I diabetes: a controversy? Immunol. Today 16, 170–172PubMedGoogle Scholar
  50. Kretz-Rommel, A., and Rubin, R. L. (2000). Disruption of positive selection of thymocytes causes autoimmunity. Nat. Med. 6, 298–305CrossRefPubMedGoogle Scholar
  51. Kriegel, M. A., Lohmann, T., Gabler, C., Blank, N., Kalden, J. R., and Lorenz, H. M. (2004). Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med. 199, 1285–1291CrossRefPubMedGoogle Scholar
  52. Krueger, G. G, Ellis, C. N. (2003). Alefacept therapy produces remission for patients with chronic plaque psoriasis. Br. J. Dermatol. 148, 784–788CrossRefPubMedGoogle Scholar
  53. Lanzavecchia, A. (1985). Antigen-specific interaction between T and B cells. Nature 314, 537–539CrossRefPubMedGoogle Scholar
  54. Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B.C., Shlomchik, M. J., and Marshak-Rothstein, A.. (2002). Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607CrossRefPubMedGoogle Scholar
  55. Limmer, A., Sacher, T., Alferink, J., Kretschmar, M., Schonrich, G., Nichterlein, T., Arnold, B., and Hammerling, G. J. (1998). Failure to induce organ-specific autoimmunity by breaking of tolerance: importance of the microenvironment. Eur. J. Immunol. 28, 2395–2406CrossRefPubMedGoogle Scholar
  56. Liu, Z., Giudice, G. J., Swartz, S. J., Fairley, J. A., Till, G. O., Troy, J. L., and Diaz, L. A. (1995). The role of complementin experimental bullous pemphigoid. J. Clin. Invest. 95, 1539–1544PubMedGoogle Scholar
  57. Liu, Z., Shipley, J. M., Vu, T. H., Zhou, X., Diaz, L. A., Werb, Z., and Senior, R. M. (1998). Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J. Exp. Med. 188, 475–482CrossRefPubMedGoogle Scholar
  58. Liu, Z., Shapiro, S. D., Zhou, X., Twining, S. S., Senior, R. M., Giudice, G. J., Fairley, J. A., and Diaz, L. A. (2000). A critical role for neutrophil elastase in experimental bullous pemphigoid. J. Clin. Invest. 105, 113–123PubMedGoogle Scholar
  59. Louis, J. A., Chiller, J. M., and Weigle, W. O. (1973). The ability of bacterial lipopolysaccharide to modulate the induction of unresponsiveness to a state of immunity. Cellular parameters. J. Exp. Med. 138, 1481–1495CrossRefPubMedGoogle Scholar
  60. Martin, R., McFarland, H. F., and McFarlin, D. E. (1992). Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187CrossRefPubMedGoogle Scholar
  61. Matzinger, P. (1994). Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045PubMedGoogle Scholar
  62. Matzinger, P., and Anderson, C. C. (2001). Immunity or tolerance: Opposite outcomes of microchimerism from skin grafts. Nat. Med. 7, 80–87CrossRefPubMedGoogle Scholar
  63. Mease, P. J., Goffe, B. S., Metz, J., VanderStoep, A., Finck, B., and Burge, D. J. (2000). Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390PubMedGoogle Scholar
  64. Mican, J. M., and Metcalfe, D. D. (1990). Arthritis and mast cell activation. J. Allergy Clin. Immunol. 86, 677–683PubMedGoogle Scholar
  65. Mocikat, R., Braumüller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., Koszinowski, U., Röcken, M. (2003). Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561–569CrossRefPubMedGoogle Scholar
  66. Mokhtarian, F., McFarlin, D. E., and Raine, C. S. (1984). Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 309, 356–358PubMedGoogle Scholar
  67. Moradpour, D., and Blum, H. E. (1999). Current and evolving therapies for hepatitis C. Eur. J. Gastroenterol. Hepatol 11, 1199–1202PubMedGoogle Scholar
  68. Moser, M., and Murphy, K. M. (2000). Dendritic cell regulation of TH1–TH2 development. Nat. Immunol. 1, 199–205CrossRefPubMedGoogle Scholar
  69. Moskophidis, D., Lechner, F., Pircher, H., and Zinkernagel, R. M. (1993). Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761CrossRefPubMedGoogle Scholar
  70. Mosmann, T. R., and Coffman, R. L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173CrossRefPubMedGoogle Scholar
  71. Mosmann, T. R., and Sad, S. (1996). The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146CrossRefPubMedGoogle Scholar
  72. Naucler, C. S., Larsson, S., and Moller, E. (1996). A novel mechanism for virus-induced autoimmunity in humans. Immunol. Rev. 152, 175–192PubMedGoogle Scholar
  73. Ohashi, P. S., Oehen, S., Buerki, K., Pircher, H., Ohashi, C. T., Odermatt, B., Malissen, B., Zinkernagel, R. M., and Hengartner, H. (1991). Ablation of "tolerance" and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317CrossRefPubMedGoogle Scholar
  74. Oldstone, M. B., Nerenberg, M., Southern, P., Price, J., and Lewicki, H. (1991). Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331CrossRefPubMedGoogle Scholar
  75. Powrie, F. (1995). T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 3, 171–174CrossRefPubMedGoogle Scholar
  76. Prinz, J. C. (1999). Which T cells cause psoriasis? Clin. Exp. Dermatol. 24, 291–295PubMedGoogle Scholar
  77. Racke, M. K., Bonomo, A., Scott, D. E., Cannella, B., Levine, A., Raine, C. S., Shevach, E. M., and Rocken, M. (1994). Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961–1966PubMedGoogle Scholar
  78. Rocha, B., and von Boehmer, H. (1991). Peripheral selection of the T cell repertoire. Science 251, 1225–1228PubMedGoogle Scholar
  79. Rock, B., Martins, C. R., Theofilopoulos, A. N., Balderas, R. S., Anhalt, G. J., Labib, R. S., Futamura, S., Rivitti, E. A., and Diaz, L. A. (1989). The pathogenic effect of IgG4 autoanti-bodies in endemic pemphigus foliaceus (fogo selvagem). N. Engl. J. Med. 320, 1463–1469PubMedGoogle Scholar
  80. Rocken, M., Urban, J. F., and Shevach, E. M. (1992a). Infection breaks T-cell tolerance. Nature 359, 79–82CrossRefPubMedGoogle Scholar
  81. Rocken, M., Saurat, J. H., and Hauser, C. (1992b). A common precursor for CD4+ T cells producing IL-2 or IL-4. J. Immunol. 148, 1031–1036PubMedGoogle Scholar
  82. Rocken, M., Urban, J., and Shevach, E. M. (1994). Antigen-specific activation, tolerization, and reactivation of the interleukin 4 pathway in vivo. J. Exp. Med. 179, 1885–1893CrossRefPubMedGoogle Scholar
  83. Rocken, M., and Shevach, E. M. (1996). Immune deviation — the third dimension of nondeletional T cell tolerance. Immunol. Rev. 149, 175–194PubMedGoogle Scholar
  84. Rocken, M., Racke, M., and Shevach, E. M. (1996). IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today 17, 225–231CrossRefPubMedGoogle Scholar
  85. Rothe, M. J., Nowak, M., and Kerdel, F. A. (1990). The mast cell in health and disease. J. Am. Acad. Dermatol. 23, 615–624PubMedGoogle Scholar
  86. Rubin, R. L. (1997). Dubois Lupus Erythematosus, 5th Edition, D. J. Wallace and B. H. Hahn, eds. (Baltimore: Williams & Wilkens), 871–901Google Scholar
  87. Schonrich, G., Kalinke, U., Momburg, F., Malissen, M., Schmitt-Verhulst, A. M., Malissen, B., Hammerling, G. J., and Arnold, B. (1991). Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304CrossRefPubMedGoogle Scholar
  88. Schuler, G., and Steinman, R. M. (1997). Dendritic cells as adjuvants for immune-mediated resistance to tumors. J. Exp. Med. 186, 1183–1187CrossRefPubMedGoogle Scholar
  89. Schuler, G., Thurner, B., and Romani, N. (1997). Dendritic cells: from ignored cells to major players in T-cell-mediated immunity. Int. Arch. Allergy Immunol. 112, 317–322PubMedGoogle Scholar
  90. Schwartz, R. H. (1998). Immunological tolerance. In Fundamental Immunology, 4th Edition, W. E. Paul, ed. (Philadelphia, New York: Lippincott-Raven), 701–740Google Scholar
  91. Sinha, A. A., Lopez, M. T., and McDevitt, H. O. (1990). Autoimmune diseases: the failure of self tolerance. Science 248, 1380–1388PubMedGoogle Scholar
  92. Stenger, S., and Modlin, R. L. (1999). T cell mediated immunity to Mycobacterium tuberculosis. Curr. Opin. Microbiol. 2, 89–93CrossRefPubMedGoogle Scholar
  93. Stockinger, B. (1999). T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol. 71, 229–265PubMedGoogle Scholar
  94. Strober, W., and Ehrhardt, R. O. (1993). Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell 75, 203–205CrossRefPubMedGoogle Scholar
  95. Tessari, G., Barba, A., and Schena, D. (1996). Lichen ruber planus following the administration of human anti-hepatitis B virus immunoglobulins [letter]. Acta Derm. Venereol. 76, 154Google Scholar
  96. Ulevitch, R. J. (2004). Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4, 512–520CrossRefPubMedGoogle Scholar
  97. Vollmer, S., Menssen, A., Trommler, P., Schendel, D., and Prinz, J. C. (1994). Tlymphocytes derived from skin lesions of patients with psoriasis vulgaris express a novel cytokine pattern that is distinct from that of T helper type 1 and T helper type 2 cells. Eur. J. Immunol. 24, 2377–2382PubMedGoogle Scholar
  98. von Herrath, M. G., Guerder, S., Lewicki, H., Flavell, R. A., and Oldstone, M. B. (1995). Coexpression of B7-1 and viral ("self") transgenes in pancreatic beta cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3, 727–738CrossRefPubMedGoogle Scholar
  99. Walker, M. R., Kasprowicz, D. J., Gersuk, V. H., Benard, A., Van Landeghen, M., Buckner, J. H., and Ziegler, S. F. (2003). Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J. Clin. Invest. 112, 1437–1443CrossRefPubMedGoogle Scholar
  100. Webb, S., Morris, C., and Sprent, J. (1990). Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 63, 1249–1256CrossRefPubMedGoogle Scholar
  101. Weber, S., Traunecker, A., Oliveri, F., Gerhard, W., and Karjalainen, K. (1992). Specific low-affinity recognition of major histocompatibility complex plus peptide by soluble T-cell receptor. Nature 356, 793–796CrossRefPubMedGoogle Scholar
  102. Weinberg, A. D., English, M., and Swain, S. L. (1990). Distinct regulation of lymphokine production is found in fresh versus in vitro primed murine helper T cells. J. Immunol. 144, 1800–1807PubMedGoogle Scholar
  103. Wucherpfennig, K. W., and Strominger, J. L. (1995). Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705CrossRefPubMedGoogle Scholar
  104. Yang, Y., Huang, C. T., Huang, X., and Pardoll, D. M. (2004). Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515CrossRefPubMedGoogle Scholar
  105. Zhang, J., Hafler, D., Hohlfeld, R., and Miller, A., eds. (1998). Immunotherapy in neuroimmunologic diseases (London: Martin Dunitz Ltd)Google Scholar
  106. Zimmermann, S., Egeter, O., Hausmann, S., Lipford, G. B., Rocken, M., Wagner, H., and Heeg, K. (1998). CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630PubMedGoogle Scholar
  107. Zinkernagel, R. M. (1996). Immunology taught by viruses. Science 271, 173–178PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  • Martin Röcken
  • Tilo Biedermann

There are no affiliations available

Personalised recommendations