Advertisement

Depolarisation Phenomena in Traumatic and Ischaemic Brain Injury

  • A. J. Strong
  • R. Dardis
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 30)

Keywords

Traumatic Brain Injury Migraine With Aura Cortical Spreading Depression Spreading Depression Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarisation. Physiol Rev 81:1065–1096PubMedGoogle Scholar
  2. 2.
    Leão AAP (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390Google Scholar
  3. 3.
    Hossmann KA (1996) Periinfarct depolarizations. [Review] [81 refs]. Cerebrovasc Brain Metab Rev 8:195–208PubMedGoogle Scholar
  4. 4.
    Strong AJ, Fabricius M, Boutelle MG, Hibbins SJ, Hopwood SE, Jones R et al (2002) Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33:2738–2743PubMedGoogle Scholar
  5. 5.
    Marshall WH (1959) Spreading cortical depression of Leão. Physiol Rev 39:239–279PubMedGoogle Scholar
  6. 6.
    Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on spreading depression. [Review] [124 refs]. Brain Res — Brain Res Rev 32:215–234PubMedGoogle Scholar
  7. 7.
    Gorji A (2001) Spreading depression: a review of the clinical relevance. Brain Res Rev 38:33–60PubMedGoogle Scholar
  8. 8.
    Obrenovitch TP, Zilkha E, Urenjak J (1996) Evidence against high extracellular glutamate promoting the elicitation of spreading depression by potassium. J Cereb Blood Flow Metab 16:923–931PubMedGoogle Scholar
  9. 9.
    Streit DS, Ferreira Filho CR, Martins-Ferreira H (1995) Spreading depression in isolated spinal cord. J Neurophysiol 74:888–890PubMedGoogle Scholar
  10. 10.
    Nicholson C (1984) Comparative neurophysiology of spreading depression in the cerebellum. [Review] [40 refs]. Anais Da Academia Brasileira de Ciencias 56:481–494PubMedGoogle Scholar
  11. 11.
    Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19:154–171PubMedGoogle Scholar
  12. 12.
    Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259PubMedGoogle Scholar
  13. 13.
    Muller M, Somjen GG (2000) Na(+) and K(+) concentrations, extra-and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735–745PubMedGoogle Scholar
  14. 14.
    Hansen AJ, Zeuthen T (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445PubMedGoogle Scholar
  15. 15.
    Collewijn H, Van Harreveld A (1966) Membrane potential of cerebral cortical cells during spreading depression and asphyxia. Exp Neurol 15:425–436PubMedGoogle Scholar
  16. 16.
    Leão AAP, Martins-Ferreira H (1953) Alteraçao da impedancia electrica no decurso de depressão alastrante da atividade do cortex cerebral. Ann Acad Brasil Cienc 25:259–266Google Scholar
  17. 17.
    Czeh G, Aitken PG, Somjen GG (1993) Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization. Brain Res 632:195–208PubMedGoogle Scholar
  18. 18.
    Snow RW, Taylor CP, Dudek FE (1983) Electrophysiological and optical changes in slices of rat hippocampus during spreading depression. J Neurophysiol 50:561–572PubMedGoogle Scholar
  19. 19.
    Hasegawa Y, Latour LL, Formato JE, Sotak CH, Fisher M (1995) Spreading waves of a reduced diffusion coefficient of water in normal and ischemic rat brain. J Cereb Blood Flow Metab 15:179–187PubMedGoogle Scholar
  20. 20.
    James MF, Smith MI, Bockhorst KH, Hall LD, Houston GC, Papadakis NG et al (1999) Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging. J Physiol 519 Pt 2:415–425Google Scholar
  21. 21.
    Martins-Ferreira H, de Castro GO (1966) Light-scattering changes accompanying spreading depression in isolated retina. J Neurophysiol 29:715–726PubMedGoogle Scholar
  22. 22.
    Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 335:353–374PubMedGoogle Scholar
  23. 23.
    Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta Physiol Scand 102:324–329PubMedGoogle Scholar
  24. 24.
    Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209PubMedGoogle Scholar
  25. 25.
    Van Harreveld A (1959) Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J Neurochem 3:300–315PubMedGoogle Scholar
  26. 26.
    Van Harreveld A, Fifkova E (1970) Glutamate release from the retina during spreading depression. J Neurobiol 2:13–29PubMedGoogle Scholar
  27. 27.
    Obrenovitch TP, Zilkha E (1995) High extracellular potassium, and not extracellular glutamate, is required for the propagation of spreading depression. J Neurophysiol 73:2107–2114PubMedGoogle Scholar
  28. 28.
    Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473PubMedGoogle Scholar
  29. 29.
    Willmott NJ, Wong K, Strong AJ (2000) A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia. J Neurosci 20:1767–1779PubMedGoogle Scholar
  30. 30.
    Willmott NJ, Wong K, Strong AJ (2000) Intercellular Ca(2+) waves in rat hippocampal slice and dissociated glial-neuron cultures mediated by nitric oxide. FEBS Lett 487:239–247PubMedGoogle Scholar
  31. 31.
    Nedergaard M (1994) Direct signalling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771PubMedGoogle Scholar
  32. 32.
    Somjen GG (1975) Electrophysiology of neuroglia. [Review] [174 refs]. Ann Rev Physiol 37:163–190Google Scholar
  33. 33.
    Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804PubMedGoogle Scholar
  34. 34.
    Charles A, Giaume C (2002) Intercellular calcium waves in astrocytes: underlying mechanisms and functional significance. In: Volterra A, Magistretti P, Haydon P (eds). The Tripartite Synapse: glia in synaptic transmission, 1 edn. Oxford University Press, New York, p 110–126Google Scholar
  35. 35.
    Kunkler PE, Kraig RP (1998) Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosc 18:3416–3425Google Scholar
  36. 36.
    Mantz J, Cordier J, Giaume C (1993) Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology 78:892–901PubMedGoogle Scholar
  37. 37.
    Saito R, Graf R, Hubel K, Taguchi J, Rosner G, Fujita T et al (1995) Halothane, but not alpha-chloralose, blocks potassium-evoked cortical spreading depression in cats. Brain Res 699:109–115PubMedGoogle Scholar
  38. 38.
    Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD (1997) Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab 17:857–864PubMedGoogle Scholar
  39. 39.
    Green JD, Petsche H (1961) Hippocampal electrical activity. IV. Abnormal electrical activity. Electroenceph Clin Neurophysiol 13:868–879Google Scholar
  40. 40.
    Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244PubMedGoogle Scholar
  41. 41.
    Leuba G, Garey LJ (1989) Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exptl Brain Res 77:31–38Google Scholar
  42. 42.
    Largo C, Ibarz JM, Herreras O (1997) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J Neurophysiol 78:295–307PubMedGoogle Scholar
  43. 43.
    Largo C, Tombaugh GC, Aitken PG, Herreras O, Somjen GG (1997) Heptanol but not fluoroacetate prevents the propagation of spreading depression in rat hippocampal slices. J Neurophysiol 77:9–16PubMedGoogle Scholar
  44. 44.
    Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18:7189–7199PubMedGoogle Scholar
  45. 45.
    Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow: relationships during progressive ischaemia in baboon cerebral cortex. J Neurol Sci 32:305–321PubMedGoogle Scholar
  46. 46.
    Rosenthal M, Somjen G (1973) Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol 36:739–749PubMedGoogle Scholar
  47. 47.
    Lauritzen M, Jorgensen MB, Diemer NH, Gjedde A, Hansen AJ (1982) Persistent oligemia of rat cerebral cortex in the wake of spreading depression. Ann Neurol 12:469–474PubMedGoogle Scholar
  48. 48.
    Back T, Kohno K, Hossmann KA (1994) Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 14:12–19PubMedGoogle Scholar
  49. 49.
    Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464PubMedGoogle Scholar
  50. 50.
    Ueki M, Linn F, Hossmann KA (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494PubMedGoogle Scholar
  51. 51.
    Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L (1993) Neurotrans-mitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15:306–312PubMedGoogle Scholar
  52. 52.
    Koizumi J (1974) Glycogen in the central nervous system. Prog Histochem Cytochem 6:1–37Google Scholar
  53. 53.
    Phelps CH (1975) An ultrastructural study of methionine sulphoximine-induced glycogen accumulation in astrocytes of the mouse cerebral cortex. J Neurocytol 4:479–490PubMedGoogle Scholar
  54. 54.
    Gjedde, A (1993) Relationship of unidirectional and net fluxes of glucose across the blood brain barrier. Personal CommunicationGoogle Scholar
  55. 55.
    Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885PubMedGoogle Scholar
  56. 56.
    Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? [Review] [66 refs]. Trends Neurosci 24:573–578PubMedGoogle Scholar
  57. 57.
    Chen Y, Swanson RA (2003) Astrocytes and brain injury. [Review] [184 refs]. J Cereb Blood Flow Metab 23:137–149PubMedGoogle Scholar
  58. 58.
    Leão AAP (1944) Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396Google Scholar
  59. 59.
    Lauritzen M, Skyhoj OT, Lassen NA, Paulson OB (1983) Changes in regional cerebral blood flow during the course of classic migraine attacks. Ann Neurol 13:633–641PubMedGoogle Scholar
  60. 60.
    Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395–398PubMedGoogle Scholar
  61. 61.
    Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. [Review] [373 refs]. J Cereb Blood Flow Metab 20:1011–1032PubMedGoogle Scholar
  62. 62.
    Koistinaho J, Pasonen S, Yrjanheikki J, Chan PH (1999) Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 30:114–119PubMedGoogle Scholar
  63. 63.
    Rangel YM, Kariko K, Harris VA, Duvall ME, Welsh FA (2001) Dose-dependent induction of mRNAs encoding brain-derived neurotrophic factor and heat-shock protein-72 after cortical spreading depression in the rat. Brain Res Molecul Brain Res 88:103–112Google Scholar
  64. 64.
    Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524PubMedGoogle Scholar
  65. 65.
    Nowak TS, Kiessling M (1999) Reprogramming of gene expression after ischemia. In: Walz W (ed) Cerebral ischemia: molecular and cellular patho-physiology. Totowa, Humana Press, NJ, p 145–216Google Scholar
  66. 66.
    Rothwell NJ, Relton JK (1993) Involvement of interleukin-1 and lipocortin-1 in ischaemic brain damage. Cerebrovasc Brain Metab Rev 5:178–198PubMedGoogle Scholar
  67. 67.
    Szaflarski J, Burtrum D, Silverstein FS (1995) Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26:1093–1100PubMedGoogle Scholar
  68. 68.
    Betz AL, Schielke GP, Yang GY (1996) Interleukin-1 in cerebral ischemia. Keio J Med 45:230–237PubMedGoogle Scholar
  69. 69.
    Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2001) Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab 21:218–225PubMedGoogle Scholar
  70. 70.
    Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1 beta promotes repair of the CNS. J Neurosci 21:7046–7052PubMedGoogle Scholar
  71. 71.
    Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P (2000) Interleukin-1beta — induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20:8153–8159PubMedGoogle Scholar
  72. 72.
    Duong TQ, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJ, Neil JJ (2001) Extracellular apparent diffusion in rat brain. Magn Res Med 45:801–810Google Scholar
  73. 73.
    Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727PubMedGoogle Scholar
  74. 74.
    Kariko K, Harris VA, Rangel Y, Duvall ME, Welsh FA (1998) Effect of cortical spreading depression on the levels of mRNA coding for putative neuroprotective proteins in rat brain. J Cereb Blood Flow Metab 18:1308–1315PubMedGoogle Scholar
  75. 75.
    Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16:1137–1142PubMedGoogle Scholar
  76. 76.
    Wang X, Li X, Currie RW, Willette RN, Barone FC, Feuerstein GZ (2000) Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1beta mRNA in ischemic brain tolerance. J Neurosci Res 59:238–246PubMedGoogle Scholar
  77. 77.
    Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappa-B is a key event in brain tolerance. J Neurosci 21:4668–4677PubMedGoogle Scholar
  78. 78.
    Marshall WH, Essig CF, Dubroff SJ (1951) Relation of temperature of cerebral cortex to spreading depression of Leão. J Neurophysiol 14:153–166PubMedGoogle Scholar
  79. 79.
    Strong AJ, Smith SE, Whittington DJ, Meldrum BS, Parsons AA, Krupinski J et al (2000) Factors influencing the frequency of fluorescence transients as markers of peri-infarct depolarizations in focal cerebral ischemia. Stroke 31(1):214–222PubMedGoogle Scholar
  80. 80.
    Tower DB, Young OM (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 20:269–278PubMedGoogle Scholar
  81. 81.
    Czeh G, Somjen GG (1990) Hypoxic failure of synaptic transmission in the isolated spinal cord, and the effects of divalent cations. Brain Res 527:224–233PubMedGoogle Scholar
  82. 82.
    Curtis DR, Watkins JC (1961) Analogues of glutamic and gammaaminobutyric acids having potent actions on mammalian neurones. Nature 191:1010–1011PubMedGoogle Scholar
  83. 83.
    Gorelova NA, Koroleva VI, Amemori T, Pavlik V, Bures J (1987) Ketamine blockade of cortical spreading depression in rats. Electroencephalography Clin Neurophysiol 66:440–447Google Scholar
  84. 84.
    Lauritzen M, Rice ME, Okada Y, Nicholson C (1988) Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res 475:317–327PubMedGoogle Scholar
  85. 85.
    Gill R, Andine P, Hillered L, Persson L, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371–379PubMedGoogle Scholar
  86. 86.
    Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12:727–733PubMedGoogle Scholar
  87. 87.
    Leão AAP, Morison RS (1945) Propagation of spreading cortical depression. J Neurophysiol 8:33–45Google Scholar
  88. 88.
    Ophoff RA, Terwindt GM, Vergouwe MN, Frants RR, Ferrari MD (1997) Wolff Award 1997. Involvement of a Ca2+ channel gene in familial hemiplegic migraine and migraine with and without aura. Dutch Migraine Genetics Research Group. [Review] [43 refs]. Headache 37:479–485PubMedGoogle Scholar
  89. 89.
    Welch KM, Ramadan NM (1995) Mitochondria, magnesium and migraine. J Neurol Sci 134:9–14PubMedGoogle Scholar
  90. 90.
    Strong AJ, Venables GS, Gibson G (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:86–96PubMedGoogle Scholar
  91. 91.
    Strong AJ, Tomlinson BE, Venables GS, Gibson G, Hardy JA (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97–108PubMedGoogle Scholar
  92. 92.
    Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740:268–274PubMedGoogle Scholar
  93. 93.
    Strong AJ, Harland SP, Meldrum BS, Whittington DJ (1996) The use of in vivo fluorescence image sequences to indicate the occurrence and propagation of transient focal depolarizations in cerebral ischemia. J Cereb Blood Flow Metab 16:367–377PubMedGoogle Scholar
  94. 94.
    Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4:709–711PubMedGoogle Scholar
  95. 95.
    Busch E, Gyngell ML, Eis M, Hoehn Berlage M, Hossmann KA (1996) Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 16:1090–1099PubMedGoogle Scholar
  96. 96.
    Lassen NA, Vorstrup S (1984) Ischaemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15: 755–756, 15:755PubMedGoogle Scholar
  97. 97.
    Mies G, Kohno K, Hossmann KA (1994) Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 14:802–807PubMedGoogle Scholar
  98. 98.
    Buchan AM, Xue D, Huang ZG, Smith KH, Lesiuk H (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2:473–476PubMedGoogle Scholar
  99. 99.
    Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229PubMedGoogle Scholar
  100. 100.
    Nedergaard M, Cooper AJ, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J Neurobiol 28:433–444PubMedGoogle Scholar
  101. 101.
    Ginsberg MD, Reivich M, Giandomenico A, Greenberg JH (1977) Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology 27:1042–1048PubMedGoogle Scholar
  102. 102.
    Nedergaard M, Astrup J (1986) Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 6:607–615PubMedGoogle Scholar
  103. 103.
    Scott JF, Robinson GM, French JM, O’Connell JE, Alberti KG, Gray CS (1999) Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST). Stroke 30:793–799PubMedGoogle Scholar
  104. 104.
    Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M et al (2001) Intensive insulin therapy in the critically ill patients. [comment]. New Engl J Med 345:1359–1367PubMedGoogle Scholar
  105. 105.
    Strong AJ, Wong C-K, Jones DA, Parkin M, Boutelle MG (2001) Detection and analysis of peri-infarct glucose and lactate transients with rapid-sampling microdialysis. J Cereb Blood Flow Metab 21(S1):86 (abstract)Google Scholar
  106. 106.
    Jones DA, Parkin MC, Langemann H, Landolt H, Hopwood SE, Strong AJ, Boutelle MG (2002) On-line neurochemical monitoring in Neurointensive care: enzyme-based assay for the simultaneous, continuous monitoring of glucose and lactate from critical care patients. J Electroanalytical Chem 238:243–252Google Scholar
  107. 107.
    Hopwood SE, Boutelle MG, Parkin MC, Bezzina EL, Strong AJ (2003) Rapid sampling of glucose and lactate using on-line microdialysis in a model of focal cerebral ischaemia. (Abstract) J Cereb Blood Flow Metab [Suppl] 1:115Google Scholar
  108. 108.
    Milner PM (1958) Notes on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroenceph Clin Neurophysiol 10:705Google Scholar
  109. 109.
    Sramka M, Brozek G, Bures J, Nadvornik P (1977) Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl Neurophysiol 40:48–61PubMedGoogle Scholar
  110. 110.
    Hadjikhani N, Sanchez DR, Wu O, Schwartz D, Bakker D, Fischl B et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Nat Acad Sci USA 98:4687–4692PubMedGoogle Scholar
  111. 111.
    Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry 46:331–339Google Scholar
  112. 112.
    Woods RP, Iacoboni M, Mazziotta JC (1994) Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache [see comments]. N Engl J Med 331:1689–1692PubMedGoogle Scholar
  113. 113.
    Gardner-Medwin AR, van Bruggen N, Williams SR, Ahier RG (1994) Magnetic resonance imaging of propagating waves of spreading depression in the anaesthetised rat. J Cereb Blood Flow Metab 14:7–11PubMedGoogle Scholar
  114. 114.
    Crowell GF, Stump DA, Biller J, McHenry LC Jr, Toole JF (1984) The transient global amnesia-migraine connection. Arch Neurol 41:75–79PubMedGoogle Scholar
  115. 115.
    Tanabe H, Hashikawa K, Nakagawa Y, Ikeda M, Yamamoto H, Harada K et al (1991) Memory loss due to transient hypoperfusion in the medial temporal lobes including hippocampus. [erratum appears in Acta Neurol Scand 1991 Nov;84(5):463]. Acta Neurol Scand 84:22–27PubMedGoogle Scholar
  116. 116.
    Strupp M, Bruning R, Wu RH, Deimling M, Reiser M, Brandt T (1998) Diffusion-weighted MRI in transient global amnesia: elevated signal intensity in the left mesial temporal lobe in 7 of 10 patients. [comment]. Ann Neurol 43:164–170PubMedGoogle Scholar
  117. 117.
    Avis HH, Carlton PL (1968) Retrograde amnesia produced by hippocampal spreading depression. Science 161:73–75PubMedGoogle Scholar
  118. 118.
    Kapp BS, Schneider AM (1971) Selective recovery from retrograde amnesia produced by hippocampal spreading depression. Science 173:1149–1151PubMedGoogle Scholar
  119. 119.
    Walker AE, Kollros JJ, Case TJ (1944) The physiological basis of concussion. J Neurosurg 1:103–116Google Scholar
  120. 120.
    Povlishock JT (2000) Pathophysiology of neural injury: therapeutic opportunities and challenges. [Review] [37 refs]. Clin Neurosurg 46:113–126PubMedGoogle Scholar
  121. 121.
    Sahuquillo J, Poca MA (2002) Diffuse axonal injury after head trauma. A review. [Review] [151 refs]. Advances & Technical Standards in Neurosurgery 27:23–86Google Scholar
  122. 122.
    Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:685–693PubMedGoogle Scholar
  123. 123.
    von Oettingen G, Bergholt B, Gyldensted C, Astrup J (2002) Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50:781–788PubMedGoogle Scholar
  124. 124.
    Takahashi H, Manaka S, Sano K (1981) Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg 55:708–717PubMedGoogle Scholar
  125. 125.
    Kubota M, Nakamura T, Sunami K, Ozawa Y, Namba H, Yamaura A et al (1989) Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity. Neurosurg Rev 12[Suppl] 1:393–399PubMedGoogle Scholar
  126. 126.
    Sunami K, Nakamura T, Ozawa Y, Kubota M, Namba H, Yamaura A (1989) Hypermetabolic state following experimental head injury. Neurosurg Rev 12[Suppl] 1:400–411PubMedGoogle Scholar
  127. 127.
    Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900PubMedGoogle Scholar
  128. 128.
    Mun-Bryce S, Wilkerson AC, Papuashvili N, Okada YC (2001) Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res 888:248–255PubMedGoogle Scholar
  129. 129.
    Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP (1991) Dynamic changes in local cerebral glucose utilization following cerebral contusion in rats: evidence of a hyper-and subsequent hypometabolic state. Brain Res 561:106–119PubMedGoogle Scholar
  130. 130.
    Nilsson B, Nordstrom C-H (1977) Experimental head injury in the rat. Part 3: cerebral blood flow and oxygen consumption after concussive impact acceleration. J Neurosurg 47:262–273PubMedGoogle Scholar
  131. 131.
    Nilsson B, Ponten U (1977) Experimental head injury in the rat. Part 2: regional brain energy metabolism in concussive trauma. J Neurosurg 47:252–261PubMedGoogle Scholar
  132. 132.
    Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ (1993) Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13:183–192PubMedGoogle Scholar
  133. 133.
    Alarcon G, Binnie CD, Elwes RD, Polkey CE (1995) Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalography Clin Neurophysiol 94:326–337Google Scholar
  134. 134.
    Back T, Hirsch JG, Szabo K, Gass A (2000) Failure to demonstrate peri-infarct depolarizations by repetitive MR diffusion imaging in acute human stroke. Stroke (Online) 31:2901–2906Google Scholar
  135. 135.
    Dreier JP, Korner K, Ebert N, Gorner A, Rubin I, Back T et al (1998) Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab 18:978–990PubMedGoogle Scholar
  136. 136.
    Wolf T, Lindauer U, Reuter U, Back T, Villringer A, Einhaupl K et al (1997) Noninvasive near infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during peri-infarct depolarizations in focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 17:950–954PubMedGoogle Scholar
  137. 137.
    Dirnagl U, Obrig H, von Pannwitz W, Kohl M, Kerskens CM, Doge C, Lindauer U, Wolf T, Villringer A (2000) Cerebral blood flow, hemoglobin oxygenation, and water diffusion changes during stroke: fingerprinting with near-infrared spectroscopy and MRI. In: Fukuuchi Y, Tomita M, Koto A (eds) 6:232–240. 2001. Springer, Tokyo. Keio University, Symposia for Life Science and Medicine: Ischemic Blood Flow in the BrainGoogle Scholar
  138. 138.
    Volterra A, Magistretti PJ, Haydon PG (2003) The Tripartite Synapse: glia in synaptic transmission. Oxford University Press, New YorkGoogle Scholar
  139. 139.
    Kohl M, Lindauer U, Dirnagl U, Villringer A (1998) Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats. Optics Lett 23:555–557Google Scholar
  140. 140.
    Anderson CM, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trend Neurosci 26(7):340–344PubMedGoogle Scholar
  141. 141.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signalling is central to the dynamic control of brain microcirculation. Nature Neurosci 6(1):43–50PubMedGoogle Scholar
  142. 142.
    Parkin MC, Hopwood SE, Strong AJ, Boutelle MG (2003) Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends Anal Chem 22(9):487–497Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • A. J. Strong
    • 1
  • R. Dardis
    • 1
  1. 1.Section of Neurosurgery, Department of Clinical NeurosciencesKing’s CollegeLondonUK

Personalised recommendations