Advertisement

Muscle and myotonic diseases

Keywords

Muscular Dystrophy Duchenne Muscular Dystrophy Spinal Muscular Atrophy Glycogen Storage Disease Inclusion Body Myositis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascanis V, Engel WK, Alvarez RB (1992) Immunocytochemical localization of ubiquitin in inclusion body myositis allows its light-microscopic distinction from polymyositis. Neurology 42: 460–461Google Scholar
  2. Choy EH, Isenberg DA (2002) Treatment of dermatomyositis and polymyositis. Rheumatology (Oxford) 41: 7–13Google Scholar
  3. Dalakas MC (1998) Controlled studies with high-dose intravenous immunoglobulin in the treatment of dermatomyositis, inclusion body myositis, and polymyositis. Neurology 51: S37–45PubMedGoogle Scholar
  4. Engel AG, Hohlfeld R, Banker BQ (1994) The polymyositis and dermatomyositis syndromes. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw Hill, New York, pp 1335–1383Google Scholar
  5. Griggs RC, Mendell JR, Miller RG (1995) Evaluation and treatment of myopathies. FA Davis, Philadelphia, pp 154–210Google Scholar
  6. Hilton-Jones D (2001) Inflammatory muscle diseases. Curr Opin Neurol 14: 591–596CrossRefPubMedGoogle Scholar
  7. Callen JP (2000) Dermatomyositis. Lancet 355: 53–57CrossRefPubMedGoogle Scholar
  8. Dalakas MC (2001) The molecular and cellular pathology of inflammatory muscle diseases. Curr Opin Pharmacol 1: 300–306PubMedGoogle Scholar
  9. Engel AG, Hohlfeld R, Banker BQ (1994) The polymyositis and dermatomyositis syndromes. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw Hill, New York, pp 1335–1383Google Scholar
  10. Griggs RC, Mendell JR, Miller RG (1995) Evaluation and treatment of myopathies. FA Davis, Philadelphia, pp 154–210Google Scholar
  11. Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 601–614Google Scholar
  12. Askanas V, Engel WK (2002) Inclusion-body myositis and myopathies: different etiologies, possibly similar pathogenic mechanisms. Curr Opin Neurol 15: 525–531CrossRefPubMedGoogle Scholar
  13. Askanas V, Engel WK, Alvarez RB, et al (1992) Beta-Amyloid protein immunoreactivity in muscle of patients with inclusion-body myositis. Lancet 339: 560–561CrossRefPubMedGoogle Scholar
  14. Dalakas MC (2002) Myosites a inclusions: mechanismes etiologiques. Rev Neurol 158: 948–958PubMedGoogle Scholar
  15. Griggs RC, Mendell JR, Miller RG (1995) Evaluation and treatment of myopathies. FA Davis, Philadelphia, pp 154–210Google Scholar
  16. Caldwell CJ, Swash M, Van Der Walt JD, et al (1995) Focal myositis: a clinicopathological study. Neuromuscular Disorders 5: 317–321CrossRefPubMedGoogle Scholar
  17. Heffner R, Barron S (1981) Polymyositis beginning as a focal process. Arch Neurol 38: 439–442PubMedGoogle Scholar
  18. Hohlfeld R, Engel AG, Goebels N, Behrens L (1997) Cellular immune mechanisms in inflammatory myopathies. Curr Opin Rheumatol 9: 520–526PubMedGoogle Scholar
  19. Smith AG, Urbanits S, Blaivas M, et al (2000) The clinical and pathological features of focal myositis. Muscle & Nerve 23: 1569–1575CrossRefGoogle Scholar
  20. De Bleecker JL, Meire VI, Van Walleghem IE, et al (2001) Immunolocalization of FAS and FAS ligand in inflammatory myopathies. Acta Neuropathol (Berl) 101(6): 572–578Google Scholar
  21. de Palma L, Chillemi C, Albanelli S, et al (2000) Muscle involvement in rheumatoid arthritis: an ultrastructural study. Ultrastruct Pathol 24: 151–156PubMedGoogle Scholar
  22. Isenberg D (1984) Myositis in other connective tissue disorders. Clin Rheum Dis 10: 151–174PubMedGoogle Scholar
  23. Hengstman GJ, Brouwer R, Egberts WT, et al (2002) Clinical and serological characteristics of 125 Dutch myositis patients. Myositis specific autoantibodies aid in the differential diagnosis of the idiopathic inflammatory myopathies. J Neurol 249: 69–75CrossRefPubMedGoogle Scholar
  24. Mastaglia FL (2000) Treatment of autoimmune inflammatory myopathies. Curr Opin Neurol 3: 507–509Google Scholar
  25. Banker BQ (1994) Parasitic myositis in myology. In: Engel AJ, Franzini-Armstrong C (eds), McGraw Hill, New York, pp 1453–1455Google Scholar
  26. Chimelli L, Silva BE (2001) Viral myositis in structural and molecular basis of skeletal muscle diseases. In: Karpati G (ed), ISN Neuropathology Press, Basel, pp 231–235Google Scholar
  27. Dalakas MC (1994) Retrovirus-related muscle diseases in myology. In: Engel AJ, Franzini-Armstrong C (eds), McGraw Hill, New York, pp 1419–1437Google Scholar
  28. Cohn RD, Campell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23: 1456–1471CrossRefPubMedGoogle Scholar
  29. Fenichel GM, Griggs RC, Kissel J, et al (2001) A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 56: 1075–1079PubMedGoogle Scholar
  30. Grady RM, Zhou H, Cunningham JM, et al (2000) Maturation and maintenance of the neuromuscular synapse: genetic evidence of for the roles of the dystrophin-glycoprotein complex. Neuron 25: 279–293CrossRefPubMedGoogle Scholar
  31. Hart DA, McDonald CM (1998) Spinal deformity in progressive neuromuscular disease. Phys Med Rehab Clin N America 9: 213–232Google Scholar
  32. Jacobsen C, Cote PD, Rossi SG, et al (2001) The dystrophoglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. J Cell Biol 152: 435–450Google Scholar
  33. Mirabella M, Servidei S, Manfredi G, et al (1993) Cardiomyopathy may be the only clinical manifestation in female carriers of Duchenne muscular dystrophy. Neurology 43: 2342–2345PubMedGoogle Scholar
  34. Koenig M, Hoffman EP, Bertelson CJ, et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509–517CrossRefPubMedGoogle Scholar
  35. Mostacciuolo ML, Miorin M, Pegoraro E, et al (1993) Reappraisal of the incidence rate of Duchenne and Becker muscular dystrophies on the basis of molecular diagnosis. Neuroepidemiology 12: 326–330PubMedGoogle Scholar
  36. Nigro G, Comi LI, Politano L, et al (1995) Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 18: 283–291CrossRefPubMedGoogle Scholar
  37. Piccolo G, Azan G, Tonin P, et al (1994) Dilated cardiomyopathy requiring cardiac transplantation as initial manifestation of XP21 Becker type muscular dystrophy. Neuromuscul Disord 4: 143–146PubMedGoogle Scholar
  38. Vita G, Di Leo R, De Gregorio C, et al (2001) Cardiovascular autonomic control in Becker muscular dystrophy. J Neurol Sci 186: 45–49CrossRefPubMedGoogle Scholar
  39. Abbruzzese C, Krahe R, Liguori M, et al (1996) Myotonic dystrophy phenotype without expansion of (CTG)n repeat: an entity distinct from proximal myotonic myopathy (PROMM)? J Neurol 243: 715–721CrossRefPubMedGoogle Scholar
  40. Brook JD, McCurrach ME, Harley HG, et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 68: 799–808CrossRefPubMedGoogle Scholar
  41. Lieberman AP, Fischbeck KH (2000) Triple repeat expansion in neuromuscular disease. Muscle and Nerve 23: 843–846CrossRefPubMedGoogle Scholar
  42. Liquori CL, Ricker K, Moseley ML, et al (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293: 864–867CrossRefPubMedGoogle Scholar
  43. Phillips MF, Steer HM, Soldan JR, et al (1999) Daytime somnolence in myotonic dystrophy. J Neurol 246: 275–282CrossRefPubMedGoogle Scholar
  44. Galbiati F, Razani B, Lisanti MP (2001) Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7: 435–441CrossRefPubMedGoogle Scholar
  45. Hack AA, Groh ME, McNally EM (2000) Sarcoglycans in muscular dystrophy. Microsc Res Tech 48: 167–180CrossRefPubMedGoogle Scholar
  46. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 355–362Google Scholar
  47. Moir RD, Spann TP (2001) The structure and function of nuclear lamins: implications for disease. Cell Mol Life Sci 58: 1748–1757PubMedGoogle Scholar
  48. Moreira ES, Wiltshire TJ, Faulkner G, et al (2000) Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24: 163–166PubMedGoogle Scholar
  49. Tsao CY, Mendell JR (1999) The childhood muscular dystrophies: making order out of chaos. Semin Neurol 19: 9–23PubMedGoogle Scholar
  50. Becher MW, Morrison L, Davis LE, et al (2001) Oculopharyngeal muscular dystrophy in Hispanic New Mexicans. JAMA 286: 2437–2440CrossRefPubMedGoogle Scholar
  51. Blumen SC, Korczyn AD, Lavoie H, et al (2000) Oculopharyngeal MD among Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene. Neurology 55: 1267–1270PubMedGoogle Scholar
  52. Fan X, Dion P, Laganiere J, et al (2001) Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum Mol Genet 10: 2341–2351CrossRefPubMedGoogle Scholar
  53. Hill ME, Creed GA, McMullan TF, et al (2001) Oculopharyngeal muscular dystrophy: phenotypic and genotypic studies in a UK population. Brain 124: 522–526CrossRefPubMedGoogle Scholar
  54. Stedman HH (2001) Molecular approaches to therapy for Duchenne and limb-girdle muscular dystrophy. Curr Opin Mol Ther 3: 350–356PubMedGoogle Scholar
  55. Felice KJ, Moore SA (2001) Unusual clinical presentations in patients harboring the facioscapulohumeral dystrophy 4q35 deletion. Muscle Nerve 24: 352–356CrossRefPubMedGoogle Scholar
  56. Fisher J, Upadhyaya M (1997) Molecular genetics of facioscapulohumeral muscular dystrophy (FSHD). Neuromuscul Disord 7: 55–62PubMedGoogle Scholar
  57. Isozumi K, DeLong R, Kaplan J, et al (1996) Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1–q24.31. Hum Mol Genet 5: 1377–1382CrossRefPubMedGoogle Scholar
  58. Kissel JT, McDermott MP, Natarajan R, et al (1999) Pilot trial of albuterol in facioscapulohumeral muscular dystrophy. FSH-DY Group. Neurology 50: 1042–1046Google Scholar
  59. Lunt PW, Harper PS (1991) Genetic counseling in facioscapulohumeral muscular dystrophy. J Med Genet 28: 655–664PubMedGoogle Scholar
  60. Van Geel M, van Deutekom JC, van Staalduinen A, et al (2000) Identification of a novel beta-tubulin subfamily with one member (TUBB4Q) located near the telomere of chromosome region 4q35. Cytogenet Cell Genet 88: 316–321PubMedGoogle Scholar
  61. Ahlberg G, von Tell D, Borg K, et al (1999) Genetic linkage of Welander distal myopathy to chromosome 2p13. Ann Neurol 46: 399–404PubMedGoogle Scholar
  62. Aoki M, Liu J, Richard I, et al (2001) Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology 57: 271–278PubMedGoogle Scholar
  63. Illa I (2000) Distal myopathies. J Neurol 247: 169–174CrossRefPubMedGoogle Scholar
  64. Saperstein DS, Amato AA, Barohn RJ (2001) Clinical and genetic aspects of distal myopathies. Muscle Nerve 24: 1440–1450PubMedGoogle Scholar
  65. Udd B, Griggs R (2001) Distal myopathies. Curr Opin Neurol 14: 561–566CrossRefPubMedGoogle Scholar
  66. Lynch PJ, Tong J, Lehane M, et al (1999) A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci USA 96: 4164–4169CrossRefPubMedGoogle Scholar
  67. Scacheri PC, Gillanders EM, Subramony SH, et al (2002) Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology 26:58: 593–602Google Scholar
  68. Taratuto AL (2002) Congenital myopathies and related disorders. Curr Opin Neurol 15: 553–561CrossRefPubMedGoogle Scholar
  69. Tubridy N, Fontaine B, Eymard B (2001) Congenital myopathies and congenital muscular dystrophies. Curr Opin Neurol 14: 575–582CrossRefPubMedGoogle Scholar
  70. Barrientos A, Barros MH, Valnot I, et al (2002) Cytochrome oxidase in health and disease. Gene 286: 53–63CrossRefPubMedGoogle Scholar
  71. DiMauro S (2001) Lessons from mitochondrial DNA mutations. Seminars in Cell and Developmental Biology 12: 397–405PubMedGoogle Scholar
  72. Nardin RA, Johns DR (2001) Mitochondrial dysfunction and neuromuscular disease. Muscle Nerve 24: 170–191CrossRefPubMedGoogle Scholar
  73. Schoffner JM (2000) Mitochondrial myopathy diagnosis. Neurologic Clinics 18: 105–123Google Scholar
  74. Chou JY (2001) The molecular basis of type 1 glycogen storage diseases. Curr Mol Med 1: 25–44PubMedGoogle Scholar
  75. DiMauro S, Lamperti C (2001) Muscle glycogenoses. Muscle Nerve 24: 984–999CrossRefPubMedGoogle Scholar
  76. Martin MA, Rubio JC, Buchbinder J, et al (2001) Molecular heterogeneity of myophosphorylase deficiency (McArdle’s disease): a genotype-phenotype correlation study. Ann Neurol 50: 574–581CrossRefPubMedGoogle Scholar
  77. Nakajima H, Raben N, Hamaguchi T, et al (2002) Phosphofructokinase deficiency; past, present and future. Curr Mol Med 2: 197–212CrossRefPubMedGoogle Scholar
  78. Tsujino S, Nonaka I, DiMauro S (2000) Glycogen storage myopathies. Neurol Clin 18: 125–150CrossRefPubMedGoogle Scholar
  79. Cwik VA (2000) Disorders of lipid metabolism in skeletal muscle. Neurol Clin 18: 167–184CrossRefPubMedGoogle Scholar
  80. DiMauro S, Melis-DiMauro P (1993) Muscle carnitine palmitoyltransferase deficiency and myoglobinuria. Science 182: 929–931Google Scholar
  81. Vockley J, Whiteman DA (2002) Defects of mitochondrial beta-oxidation: a growing group of disorders. Neuromuscul Disord 12: 235–246PubMedGoogle Scholar
  82. Argov Z (2000) Drug-induced myopathies. Curr Opin Neurol 13: 541–545PubMedGoogle Scholar
  83. Dalakas MC, Illa I, Pezeshkpour GH, et al (1991) Mitochondrial myopathy caused by longterm zidovudine therapy. N Engl J Med 322: 1098–1105Google Scholar
  84. Victor M, Sieb JP (1994) Myopathies due to drugs, toxins and nutritional deficiencies. In: Engel AG, Fiazini-Armstrong C (eds) Myology, basic and clinical. McGraw-Hill, New York, pp 1697–1725Google Scholar
  85. Evans M, Rees A (2002) Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf 25: 649–663CrossRefPubMedGoogle Scholar
  86. Danon MJ, Carpenter S (1991) Myopathy with thick filament (myosin) loss following prolonged paralysis with vecuronium during steroid treatment. Muscle Nerve 14: 1131–1139CrossRefPubMedGoogle Scholar
  87. Hund E (1999) Myopathy in critically ill patients. Crit Care Med 27: 2544–2547PubMedGoogle Scholar
  88. Rouleau G, Karpati G, Carpenter S, et al (1987) Glucocorticoid excess induces preferential depletion of myosin in denervated skeletal muscle fibers. Muscle Nerve 10: 428–438CrossRefPubMedGoogle Scholar
  89. Showalter CJ, Engle AG (1997) Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. Muscle Nerve 20: 316–322CrossRefPubMedGoogle Scholar
  90. Dyck PJ, Windebank AJ (2002) Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve 25: 477–491PubMedGoogle Scholar
  91. Horak HA, Pourmand R (2000) Endocrine myopathies. Neurol Clin 18: 203–213CrossRefPubMedGoogle Scholar
  92. Madariaga MG (2002) Polymyositis-like syndrome in hypothyroidism: review of cases reported over the past twenty-five years. Thyroid 12: 331–336CrossRefPubMedGoogle Scholar
  93. George AL Jr, Crackower MA, Abdalla JA, et al (1993) Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat Genet 3: 305–310CrossRefPubMedGoogle Scholar
  94. Jentsch TJ, Stein V, Weinreich F, et al (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503–568PubMedGoogle Scholar
  95. Ptacek LJ, Tawil R, Griggs RC, et al (1993) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 44: 1500–1503Google Scholar
  96. Wu FF, Ryan A, Devaney J, et al (2002) Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain 125: 2392–2407CrossRefPubMedGoogle Scholar
  97. Bendahhou S, Cummins TR, Kwiecinski H, et al (1999) Characterization of a new sodium channel mutation at arginine 1448 associated with moderate Paramyotonia congenita in humans. J Physiol 518: 337–344CrossRefPubMedGoogle Scholar
  98. Chahine M, George AL Jr, Zhou M, et al (1994) Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12: 281–294CrossRefPubMedGoogle Scholar
  99. Ptacek LJ, Tawil R, Griggs RC, et al (1994) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 44: 1500–1503PubMedGoogle Scholar
  100. Fontaine B, Khurana TS, Hoffman EP, et al (1990) Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha subunit gene. Science 250: 1000–1002PubMedGoogle Scholar
  101. Ptacek LJ, George AL Jr, Griggs RC, et al (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67: 1021–1027PubMedGoogle Scholar
  102. Rojas CV, Neely A, Velasco-Loyden G, et al (1999) Hyperkalemic periodic paralysis M1592V mutation modifies activation in human skeletal muscle Na+ channel. Am J Physiol 276: C259–266PubMedGoogle Scholar
  103. Wagner S, Lerche H, Mitrovic N, et al (1997) A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity. Neurology 49: 1018–1025PubMedGoogle Scholar
  104. Cannon SC (2002) An expanding view for the molecular basis of familial periodic paralysis. Neuromuscul Disord 12: 533–543PubMedGoogle Scholar
  105. Davies NP, Eunson LH, Samuel M, et al (2001) Sodium channel gene mutations in hypokalemic periodic paralysis: an uncommon cause in the UK. Neurology 57: 1323–1325PubMedGoogle Scholar
  106. Dias da Silva MR, Cerutti JM, Tengan CH, et al (2002) Mutations linked to familial hypokalaemic periodic paralysis in the calcium channel alpha1 subunit gene (Cav1.1) are not associated with thyrotoxic hypokalaemic periodic paralysis. Clin Endocrinol (Oxf) 56: 367–375CrossRefGoogle Scholar
  107. Lehmann-Horn F, Jurkat-Rott K, Rudel R (2002) Periodic paralysis: understanding channelopathies. Curr Neurol Neurosci Rep 2: 61–69PubMedGoogle Scholar
  108. Moxley III RT (2000) Channelopathies. Curr Treat Options Neurol 2: 31–47Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Personalised recommendations