Skip to main content

The Effect of Ionic Environment on the Adsorption of Phenol

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

Abstract

The effect of the ionic environment on the adsorption of phenol from aqueous solutions was investigated in a predominantly microporous carbon and in a commercial carbon designed for wastewater treatment. It was found that not only the pH of the solution but also the method of its setting affects the adsorption capacity. Setting the pH with a buffer solution instead of HCl/NaOH results in a reduced adsorption capacity, owing to the increased number of competing species for adsorption sites, and also to pore blocking. The latter is less critical for the commercial carbon with wider pores. Thermal desorption of phenol exhibits an even stronger dependence on pH setting than adsorption. Upon heating, a mass equivalent to 10–35% of the adsorbed phenol is retained by the surface as a carbon-rich residue, which may modify not only the chemistry but also the pore volume and the pore size distribution of the carbon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leon y Leon CA, Radovic LR (1994) Interfacial Chemistry and Electrochemistry of Carbon Surfaces. In: Thrower PA (Ed.) Chemistry and Physics of Carbon, Vol 24. Marcel Dekker, New York, pp 213–310.

    Google Scholar 

  2. Boehm H P (1966) Chemical Identification of Surface Groups. In: Eley DD, Pines H, Weisz PB (eds) Advances in Catalysis, Vol 16. Academic Press, New York, pp 179–274

    Google Scholar 

  3. Bismarck A, Wuertz C, Springer J (1999) Carbon 37:1019

    Article  CAS  Google Scholar 

  4. López-Ramón MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) Carbon 37:1215

    Article  Google Scholar 

  5. Papirer E, Li S, Donnet JB (1987) Carbon 25:243

    Article  CAS  Google Scholar 

  6. Suárez D, Menéndez JA, Fuente E, Montes-Morán MA (1999) Langmuir 15:3897

    Article  Google Scholar 

  7. Fabish TJ, Schleifer DE (1984) Carbon 22:19

    Article  CAS  Google Scholar 

  8. László K, Tombácz E, Novák C (2007) Colloids Surf A 306:95

    Article  Google Scholar 

  9. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) In: Radovic LR (ed) Chemistry and Physics of Carbon, A Series of Advances, Vol 27. Marcel Dekker, New York, pp 227

    Google Scholar 

  10. Contescu A, Vass M, Contescu C, Putyera K, Schwarz JA (1998) Carbon 36:247

    Article  CAS  Google Scholar 

  11. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon Materials as Adsorbents in Aqueous Solutions. In: Radovic LR (ed) Chemistry and Physics of Carbon, Vol 27. Marcel Dekker, New York, pp 227–405

    Google Scholar 

  12. Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Chemosphere 58:1049

    Google Scholar 

  13. Moreno-Castilla C (2004) Carbon 42:83

    Article  CAS  Google Scholar 

  14. Terzyk AP (2004) J Colloid Interface Sci 275:9

    Article  CAS  Google Scholar 

  15. Coughlin RW, Ezra FS (1968) Environ Sci Technol 2:291

    Article  CAS  Google Scholar 

  16. Ania CO, Béguin F (2007) Water Res 41:3372

    Article  CAS  Google Scholar 

  17. László K, Bóta A, Nagy LG (1997) Carbon 35:593

    Article  Google Scholar 

  18. Tessmer CH, Vidic RD, Uranowski LJ (1997) Environ Sci Technol 31:1872

    Article  CAS  Google Scholar 

  19. Newcombe G, Hayes R, Drikas M (1993) Colloids Surf A 78:65

    Article  CAS  Google Scholar 

  20. Giles C, Mc Ewan T, Nakhwa S, Smith DJ (1960) J Chem Soc 3973

    Google Scholar 

  21. Franz M, Arafat HA, Pinto NG (2000) Carbon 38:1807

    Article  CAS  Google Scholar 

  22. Villacanas F, Pereira MFR, Órfao JJM, Figueiredo JL (2006) J Colloid Interface Sci 293:128

    Article  CAS  Google Scholar 

  23. Salame II, Bandosz TJ (2003) J Colloid Interface Sci 264:307

    Article  CAS  Google Scholar 

  24. Terzyk AP (2003) J Colloid Interface Sci 268:301

    Article  CAS  Google Scholar 

  25. Ania CO, Parra JB, Pevida C, Arenillas A, Rubiera F, Pis JJ (2005) J Anal Appl Pyrolysis 74:518

    Article  CAS  Google Scholar 

  26. Cooke S, Labes MM (1994) Carbon 32:1055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina László .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tóth, A., Novák, C., László, K. (2008). The Effect of Ionic Environment on the Adsorption of Phenol. In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_105

Download citation

Publish with us

Policies and ethics