Skip to main content

Microdrops Evaporating on AFM Cantilevers

  • Conference paper
  • First Online:
  • 2686 Accesses

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 134))

Abstract

The kinetics of evaporation or drying of microscopic, sessile drops from solid surfaces is relevant in a variety of technological processes, such as printing, painting, and heat-transfer applications, besides being of fundamental interest. Drop evaporation has been commonly observed by means of video-microscope imaging, by ultra-precision weighing with electronic microbalances or with quartz crystal microbalances (QCM). Abundant information was gained over the years with these techniques, so that the evaporation of macroscopic drops of simple liquids from inert surfaces is nowadays well understood. The same techniques are, however, not applicable to microscopic drops. Furthermore they do not directly provide a measure of the interfacial stresses arising at the contact area between liquid and solid, which are known to play a key role in the evaporation kinetics of small drops.

Here I show how the use of atomic force microscope (AFM) cantilevers as sensitive stress, mass, and temperature sensors can be employed to monitor the evaporation of microdrops of water. Starting drop diameters are always below 100 μm. The foremost interest lies in exploring the last stages of the evaporation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heilmann J, Lindqvist U (2000) J Imaging Sci Technol 44:491–494

    CAS  Google Scholar 

  2. Socol Y, Berenstein L, Melamed O, Zaban A, Nitzan B (2004) J Imaging Sci Technol 48:15–21

    CAS  Google Scholar 

  3. Kim EK, Ekerdt JG, Willson CG (2005) J Vac Sci Technol B 23:1515–1520

    Article  CAS  Google Scholar 

  4. Tullo AH (2002) Chem Eng News 80:27–30

    Google Scholar 

  5. Chou FC, Gong SC, Chung CR, Wang MW, Chang CY (2004) J Appl Phys Part 1 Japan 43:5609–5613

    Google Scholar 

  6. Fabbri M, Jiang SJ, Dhir VK (2005) J Heat Mass Transf 127:38–48

    Article  Google Scholar 

  7. Amon CH, Yao SC, Wu CF, Hsieh CC (2005) J Heat Transf Transact Asme 127:66–75

    Article  Google Scholar 

  8. Shedd TA (2007) Heat Transf Engin 28:87–92

    Article  CAS  Google Scholar 

  9. www.fogtec-international.com

    Google Scholar 

  10. Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Adv Mater 13:1601–1605

    Article  CAS  Google Scholar 

  11. Bonaccurso E, Butt HJ, Hankeln B, Niesenhaus B, Graf K (2005) Appl Phys Lett 86:124101

    Article  CAS  Google Scholar 

  12. De Gans BJ, Hoeppener S, Schubert US (2006) Adv Mater 18:910–914

    Article  CAS  Google Scholar 

  13. Karabasheva S, Baluschev S, Graf K (2006) Appl Phys Lett 89:031110

    Article  CAS  Google Scholar 

  14. Ionescu RE, Marks RS, Gheber LA (2003) Nano Lett 3:1639–1642

    Article  CAS  Google Scholar 

  15. Lefebvre AH (1989) Atomization and Sprays. Taylor & Francis, London

    Google Scholar 

  16. Lee ER (2003) Microdrop Generation. CRC Press, Taylor and Francis, Boca Raton

    Google Scholar 

  17. Edwards BF, Wilder JW, Scime EE (2001) Eur J Phys 22:113–118

    Article  Google Scholar 

  18. Bourges-Monnier C, Shanahan MER (1995) Langmuir 11:2820–2829

    Article  CAS  Google Scholar 

  19. Rowan SM, Newton MI, McHale G (1995) J Phys Chem 99:13268–13271

    Article  CAS  Google Scholar 

  20. Birdi KS, Vu DT, Winter A (1989) J Phys Chem 93:3702–3703

    Article  CAS  Google Scholar 

  21. Picknett RG, Bexon R (1977) J Colloid Interface Sci 61:336350

    Article  Google Scholar 

  22. Pham NT, McHale G, Newton MI, Carroll BJ, Rowan SM (2004) Langmuir 20:841–847

    Article  CAS  Google Scholar 

  23. Bonaccurso E, Butt HJ (2005) J Phys Chem B 109:253–263

    Article  CAS  Google Scholar 

  24. Haschke T, Bonaccurso E, Butt H-J, Lautenschlager D, Schönfeld F, Wiechert W (2006) J Micromech Microeng 16:2273–2280

    Article  Google Scholar 

  25. Golovko DS, Haschke T, Wiechert W, Bonaccurso E (2007) Rev Sci Instrum 78:043705

    Article  CAS  Google Scholar 

  26. Obrien RN, Saville P (1987) Langmuir 3:41–45

    Article  CAS  Google Scholar 

  27. Cordeiro RM, Pakula T (2005) J Phys Chem B 109:4152–4161

    Article  CAS  Google Scholar 

  28. Soolaman DM, Yu HZ (2005) J Phys Chem B 109:17967–17973

    Article  CAS  Google Scholar 

  29. Atkins P, De Paula J (2002) Physical Chemistry. Oxford University Press, Oxford

    Google Scholar 

  30. Butt HJ, Golovko DS, Bonaccurso E (2007) J Phys Chem B 111:5277–5283

    Article  CAS  Google Scholar 

  31. Gasch R, Knothe K (1989) Strukturdynamik II. Kontinua und ihre Diskretisierung. Springer, Berlin

    Google Scholar 

  32. Landau LD, Lifshitz EM (2002) Theory of Elasticity. Butterworth-Heinemann, Oxford

    Google Scholar 

  33. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  34. David S, Sefiane K, Tadrist L (2007) Colloids Surf A 298:108–114

    Article  CAS  Google Scholar 

  35. Blinov VI, Dobrynina VV (1971) J Eng Phys Thermophys 21:229–237

    CAS  Google Scholar 

  36. Golovko DS, Bonanno P, Lorenzoni S, Stefani F, Raiteri R, Bonaccurso E (2008) J Micromech Microeng, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Bonaccurso .

Editor information

Günter K. Auernhammer Hans-Jürgen Butt Doris Vollmer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonaccurso, E. (2008). Microdrops Evaporating on AFM Cantilevers. In: Auernhammer, G.K., Butt, HJ., Vollmer, D. (eds) Surface and Interfacial Forces – From Fundamentals to Applications. Progress in Colloid and Polymer Science, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_084

Download citation

Publish with us

Policies and ethics