Approaches to Discovering Drugs that Regulate E3 Ubiquitin Ligases

  • J. Huang
  • L. Tsvetkov
  • K. Qu
  • S. Daniel-Issakani
  • D. G. Payan
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2008/1)

Abstract

The ubiquitin-proteasome system (UPS) plays an essential role in a wide variety of cell regulatory signaling pathways. The clinical effectiveness of the proteasome inhibitor Velcade in the treatment of several human cancers underscores the importance of the UPS as a novel target area for pharmaceutical intervention. E3 ubiquitin ligases are key enzyme complexes that regulate and determine the ubiquitination of specific substrates, whose abnormal regulation has been implicated in multiple disease phenotypes. Targeting a selective E3 ligase may allow specific manipulation of distinct pathways and eventually lead to a better therapeutic index with reduced nonspecific side effects. Here, we aim to discuss the challenges of interfering with small molecules in this target class, as well as current strategies and progress in E3 ligase drug discovery.

Keywords

Ring Finger Domain Substrate Ubiquitination Selective Small Molecule Inhibitor Good Therapeutic Index Secondary Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708CrossRefPubMedGoogle Scholar
  2. Bowman AL, Nikolovska-Coleska Z, Zhong H, Wang S, Carlson HA (2007) Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814CrossRefPubMedGoogle Scholar
  3. Cardozo T, Abagyan R (2005) Druggability of SCF ubiquitin ligase-protein interfaces. Methods Enzymol 399:634–653CrossRefPubMedGoogle Scholar
  4. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 4:193–199CrossRefGoogle Scholar
  5. Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114PubMedGoogle Scholar
  6. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ (2008) Targeting the p27 E3 ligase SCFSkp2 results in p27- and Skp2-mediated cell cycle arrest, and activation of autophagy. Blood 111:4690–4699CrossRefPubMedGoogle Scholar
  7. Davydov IV, Woods D, Safiran YJ, Oberoi P, Fearnhead HO, Fang S, Jensen JP, Weissman AM, Kenten JH, Vousden KH (2004) Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2. J Biomol Screen 8:695–703CrossRefGoogle Scholar
  8. Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49:3432–3435CrossRefPubMedGoogle Scholar
  9. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445CrossRefPubMedGoogle Scholar
  10. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M, Pavletich NP (2005) Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 20:9–19CrossRefPubMedGoogle Scholar
  11. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299CrossRefPubMedGoogle Scholar
  12. Hong CA, Swearingen E, Mallari R, Gao X, Cao Z, North A, Young SW, Huang SG (2003) Development of a high throughput time-resolved fluorescence resonance energy transfer assay for TRAF6 ubiquitin polymerization. Assay Drug Dev Technol 1:175–180CrossRefPubMedGoogle Scholar
  13. Huang J, Sheung J, Dong G, Coquilla C, Daniel-Issakani S, Payan DG (2005) High-throughput screening for inhibitors of the e3 ubiquitin ligase APC. Methods Enzymol 399:740–754CrossRefPubMedGoogle Scholar
  14. Huang KS, Vassilev LT (2005) High-throughput screening for inhibitors of the Cks1-Skp2 interaction. Methods Enzymol 399:717–728CrossRefPubMedGoogle Scholar
  15. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328CrossRefPubMedGoogle Scholar
  16. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97:10430–10435CrossRefPubMedGoogle Scholar
  17. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953CrossRefPubMedGoogle Scholar
  18. Lai Z, Yang T, Kim YB, Sielecki TM, Diamond MA, Strack P, Rolfe M, Caligiuri M, Benfield PA, Auger KR, Copeland RA (2002) Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci U S A 99:14734–14739CrossRefPubMedGoogle Scholar
  19. Lu Y, Nikolovska-Coleska Z, Fang X, Gao W, Shangary S, Qiu S, Qin D, Wang S (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 49:3759–3762CrossRefPubMedGoogle Scholar
  20. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456CrossRefPubMedGoogle Scholar
  21. Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM 2; mapping of the MDM 2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529PubMedGoogle Scholar
  22. Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13:179–188CrossRefPubMedGoogle Scholar
  23. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9:661–664CrossRefPubMedGoogle Scholar
  24. Tsvetkov L, Lin H, Sheung J, Zhou X, Dong G, Daniel-Issakani S, Payan D, Huang J (2008) Identification of novel SCF inhibitors. AACR-Ubiquitin conference (in press)Google Scholar
  25. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681CrossRefPubMedGoogle Scholar
  26. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848CrossRefPubMedGoogle Scholar
  27. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693CrossRefPubMedGoogle Scholar
  28. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009CrossRefPubMedGoogle Scholar
  29. Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13:270–283CrossRefPubMedGoogle Scholar
  30. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012CrossRefPubMedGoogle Scholar
  31. Xu K, Belunis C, Chu W, Weber D, Podlaski F, Huang KS, Reed SI, Vassilev LT (2003) Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase. Biochem J 371:957–964CrossRefPubMedGoogle Scholar
  32. Xu S, Patel P, Abbasian M, Giegel D, Xie W, Mercurio F, Cox S (2005) In vitro SCFbeta-Trcp1-mediated IkappaBalpha ubiquitination assay for high-throughput screen. Methods Enzymol 399:729–740CrossRefPubMedGoogle Scholar
  33. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH (2005) Small molecule inhibitors of HDM 2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 6:547–559CrossRefGoogle Scholar
  34. Yang Y, Kitagaki J, Dai RM, Tsai YC, Lorick KL, Ludwig RL, Pierre SA, Jensen JP, Davydov IV, Oberoi P, Li CC, Kenten JH, Beutler JA, Vousden KH, Weissman AM (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67:9472–9481CrossRefPubMedGoogle Scholar
  35. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Huang
    • 1
  • L. Tsvetkov
    • 1
  • K. Qu
    • 1
  • S. Daniel-Issakani
    • 1
  • D. G. Payan
    • 1
  1. 1.Rigel Pharmaceuticals, Inc.South San FranciscoUSA

Personalised recommendations