Ubiquitination of Myc: Proteasomal Degradation and Beyond

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2008/1)


The level of Myc proteins is a critical determinant of cellular proliferation and apoptosis. Ubiquitination of Myc plays a key role in controlling protein levels by stimulating proteasomal degradation of the protein. Some experiments suggest that ubiquitination may also regulate Myc function in addition to turnover. This review attempts to summarize current knowledge about this field.


Ubiquitin Ligase Polyubiquitin Chain Nontransformed Cell Tissue Culture Experiment Multiple Human Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the authors' laboratory on Myc turnover is funded by the Deutsche Forschungsgemeinschaft via the SFB593 (“Mechanisms of cellular compartmentalization and the relevance for disease”).


  1. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645CrossRefPubMedGoogle Scholar
  2. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S et al (2005) The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123:409–421CrossRefPubMedGoogle Scholar
  3. Amati B (2004) Myc degradation: Dancing with ubiquitin ligases. Proc Natl Acad Sci U S A 101:8843–8844CrossRefPubMedGoogle Scholar
  4. Arabi A, Rustum C, Hallberg E, Wright AP (2003) Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 116:1707–1717CrossRefPubMedGoogle Scholar
  5. Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I et al (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310CrossRefPubMedGoogle Scholar
  6. Arnold HK, Sears RC (2006) Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26:2832–2844CrossRefPubMedGoogle Scholar
  7. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95:2104–2110PubMedGoogle Scholar
  8. Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G, Biroccio A (2006) c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 21:509–519CrossRefPubMedGoogle Scholar
  9. Bonvini P, Nguyen P, Trepel J, Neckers LM (1998) In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome. Oncogene 16:1131–1139CrossRefPubMedGoogle Scholar
  10. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083CrossRefPubMedGoogle Scholar
  11. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117CrossRefPubMedGoogle Scholar
  12. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451CrossRefPubMedGoogle Scholar
  13. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318CrossRefPubMedGoogle Scholar
  14. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 20:2423–2435CrossRefPubMedGoogle Scholar
  15. Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW, Clurman BE (2008) Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 181:913–920CrossRefPubMedGoogle Scholar
  16. Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A (1998) Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A 95:8058–8063CrossRefPubMedGoogle Scholar
  17. Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300:342–344CrossRefPubMedGoogle Scholar
  18. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98:5043–5048CrossRefPubMedGoogle Scholar
  19. Hall JR, Kow E, Nevis KR, Lu CK, Luce KS, Zhong Q, Cook JG (2007) Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol Biol Cell 18:3340–3350CrossRefPubMedGoogle Scholar
  20. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefPubMedGoogle Scholar
  21. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811CrossRefPubMedGoogle Scholar
  22. Herbst A, Salghetti SE, Kim SY, Tansey WP (2004) Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23:3863–3871CrossRefPubMedGoogle Scholar
  23. Herbst A, Hemann MT, Tworkowski KA, Salghetti SE, Lowe SW, Tansey WP (2005) A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep 6:177–183CrossRefPubMedGoogle Scholar
  24. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061CrossRefPubMedGoogle Scholar
  25. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates myc protein stability and activity. Molecular cell 11:1177–1188CrossRefPubMedGoogle Scholar
  26. Li M, Brooks CL, Kon N, Gu W (2004) A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13:879–886CrossRefPubMedGoogle Scholar
  27. Liu Z, Oughtred R, Wing SS (2005) Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 25:2819–2831CrossRefPubMedGoogle Scholar
  28. Lüscher B, Eisenman RN (1988) c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 8:2504–2512PubMedGoogle Scholar
  29. Malempati S, Tibbitts D, Cunningham M, Akkari Y, Olson S, Fan G, Sears RC (2006) Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia 20:1572–1581CrossRefPubMedGoogle Scholar
  30. Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, Brown K, Bryson S, Balmain A (2004) Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432:775–779CrossRefPubMedGoogle Scholar
  31. Mu JJ, Wang Y, Luo H, Leng M, Zhang J, Yang T, Besusso D, Jung SY, Qin J (2007) A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) Substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 282:17330–17334CrossRefPubMedGoogle Scholar
  32. Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K, Nakayama KI (2007) Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204:2875–2888CrossRefPubMedGoogle Scholar
  33. Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: marvelous lY Complex. Adv Cancer Res 84:81–154CrossRefPubMedGoogle Scholar
  34. Pelengaris S, Khan M, Evan GI (2002) Suppression of myc-induced apoptosis in beta cells exposes multiple oncogenic properties of myc and triggers carcinogenic progression. Cell 109:321–334CrossRefPubMedGoogle Scholar
  35. Popov N, Herold S, Llamazares M, Schulein C, Eilers M (2007a) Fbw7 and Usp28 regulate myc protein stability in response to DNA damage. Cell cycle 6:2327–2331CrossRefPubMedGoogle Scholar
  36. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M (2007b) The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9:765–774CrossRefPubMedGoogle Scholar
  37. Sears R, Leone G, DeGregori J, Nevins JR (1999) Ras enhances Myc protein stability. Mol Cell 3:169–179CrossRefPubMedGoogle Scholar
  38. Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM (2005) The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9:327–338CrossRefPubMedGoogle Scholar
  39. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI et al (2003) The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200CrossRefGoogle Scholar
  40. Welcker M, Clurman BE (2007) Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div 2:7CrossRefPubMedGoogle Scholar
  41. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev 8:83–93CrossRefGoogle Scholar
  42. Welcker M, Orian A, Grim JA, Eisenman RN, Clurman BE (2004a) A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol 14:1852–1857CrossRefPubMedGoogle Scholar
  43. Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, Clurman BE (2004b) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A 101:9085–9090CrossRefPubMedGoogle Scholar
  44. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI (2004) Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125CrossRefPubMedGoogle Scholar
  45. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T et al (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6:308–318CrossRefPubMedGoogle Scholar
  46. Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL, McMahon SB (2008) The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29:102–111CrossRefPubMedGoogle Scholar
  47. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A (2008) The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10:643–653CrossRefPubMedGoogle Scholar
  48. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Molecular Biology and Tumor ResearchMarburgGermany

Personalised recommendations