Transcriptional Control and the Ubiquitin–Proteasome System

  • A. Leung
  • F. Geng
  • A. Daulny
  • G. Collins
  • P. Guzzardo
  • W. P. Tansey
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2008/1)


Regulation of transcription is a critically important process that controls development, differentiation, and the maintenance of cellular homeostasis. Cells have evolved numerous mechanisms to keep gene transcription tightly in check, some of which involve the ubiquitin–proteasome system. In this chapter, we review evidence supporting the concept that ubiquitin and the proteasome not only control transcription, but provide the biochemical means to drive key steps in the transcription process forward.


Proteasome System Transcriptional Activation Domain License Model Potent Transcriptional Activator Proteasome Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



WPT was a Kimmel Foundation, and Leukemia and Lymphoma Society, Scholar. Work in the Tansey laboratory is supported by NIH Grant GM067728, the CSHL Cancer Center Support Grant CA45508, The Irving Hansen Memorial Foundation, and by US Public Health Service grant CA-13106 from the National Cancer Institute.


  1. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S et al (2005) The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123:409–421CrossRefPubMedGoogle Scholar
  2. Akiyama K, Yokota K, Kagawa S, Shimbara N, DeMartino GN, Slaughter CA, Noda C, Tanaka K (1995) cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome, a homolog of yeast transcriptional factor Sug1p. FEBS Lett 363:151–156CrossRefPubMedGoogle Scholar
  3. Auld KL, Brown CR, Casolari JM, Komili S, Silver PA (2006) Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol Cell 21:861–871CrossRefPubMedGoogle Scholar
  4. Barberis A, Pearlberg J, Simkovich N, Farrell S, Reinagel P, Bamdad C, Sigal G, Ptashne M (1995) Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368CrossRefPubMedGoogle Scholar
  5. Barboric M, Zhang F, Besenicar M, Plemenitas A, Peterlin BM (2005) Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation. J Virol 79:11135–11141CrossRefPubMedGoogle Scholar
  6. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226CrossRefPubMedGoogle Scholar
  7. Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW, Dong JT (2005) Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 24:3319–3327CrossRefPubMedGoogle Scholar
  8. Chi Y, Huddleston MJ, Zhang X, Young RA, Annan RS, Carr SA, Deshaies RJ (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15:1078–1092CrossRefPubMedGoogle Scholar
  9. Collins GA, Tansey WP (2006) The proteasome: a utility tool for transcription? Curr Opin Genet Dev 16:197–202CrossRefPubMedGoogle Scholar
  10. Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW et al (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127:1401–1413CrossRefPubMedGoogle Scholar
  11. Davie JR, Murphy LC (1990) Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29:4752–4757CrossRefPubMedGoogle Scholar
  12. Davie JR, Lin R, Allis CD (1991) Timing of the appearance of ubiquitinated histones in developing new macronuclei of Tetrahymena thermophila. Biochem Cell Biol 69:66–71CrossRefPubMedGoogle Scholar
  13. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676CrossRefPubMedGoogle Scholar
  14. Ezhkova E, Tansey WP (2004) Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 13:435–442CrossRefPubMedGoogle Scholar
  15. Fang J, Chen T, Chadwick B, Li E, Zhang Y (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279:52812–52815CrossRefPubMedGoogle Scholar
  16. Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA (2001) The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 7:981–991CrossRefPubMedGoogle Scholar
  17. Ferdous A, Sikder D, Gillette T, Nalley K, Kodadek T, Johnston SA (2007) The role of the proteasomal ATPases and activator monoubiquitylation in regulating Gal4 binding to promoters. Genes Dev 21:112–123CrossRefPubMedGoogle Scholar
  18. Fraser RA, Rossignol M, Heard DJ, Egly JM, Chambon P (1997) SUG1, a putative transcriptional mediator and subunit of the PA700 proteasome regulatory complex, is a DNA helicase. J Biol Chem 272:7122–7126CrossRefPubMedGoogle Scholar
  19. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z (1998) Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547CrossRefPubMedGoogle Scholar
  20. Ghislain M, Udvardy A, Mann C (1993) S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366:358–362CrossRefPubMedGoogle Scholar
  21. Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T (2004) Physical and functional association of RNA polymerase II and the proteasome. Proc Natl Acad Sci U S A 101:5904–5909CrossRefPubMedGoogle Scholar
  22. Goldknopf IL, Busch H (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci U S A 74:864–868CrossRefPubMedGoogle Scholar
  23. Goldknopf IL, Taylor CW, Baum RM, Yeoman LC, Olson MO, Prestayko AW, Busch H (1975) Isolation and characterization of protein A24, a ``histone-like'' non-histone chromosomal protein. J Biol Chem 250:7182–7187PubMedGoogle Scholar
  24. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98:5043–5048CrossRefPubMedGoogle Scholar
  25. Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C (2006) Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci U S A 103:16376–16381CrossRefPubMedGoogle Scholar
  26. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299CrossRefPubMedGoogle Scholar
  27. Himmelfarb HJ, Pearlberg J, Last DH, Ptashne M (1990) GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309CrossRefPubMedGoogle Scholar
  28. Huang SY, Barnard MB, Xu M, Matsui S, Rose SM, Garrard WT (1986) The active immunoglobulin kappa chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc Natl Acad Sci U S A 83:3738–3742CrossRefPubMedGoogle Scholar
  29. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513CrossRefPubMedGoogle Scholar
  30. Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA (2004) Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18:184–195CrossRefPubMedGoogle Scholar
  31. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188CrossRefPubMedGoogle Scholar
  32. Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608CrossRefPubMedGoogle Scholar
  33. Kurosu T, Peterlin BM (2004) VP16 and ubiquitin; binding of P-TEFb via its activation domain and ubiquitin facilitates elongation of transcription of target genes. Curr Biol 14:1112–1116CrossRefPubMedGoogle Scholar
  34. Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123:423–436CrossRefPubMedGoogle Scholar
  35. Lee JW, Ryan F, Swaffield JC, Johnston SA, Moore DD (1995) Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374:91–94CrossRefPubMedGoogle Scholar
  36. Levinger L, Varshavsky A (1982) Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28:375–385CrossRefPubMedGoogle Scholar
  37. Lipford JR, Deshaies RJ (2003) Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5:845–850CrossRefPubMedGoogle Scholar
  38. Lipford JR, Smith GT, Chi Y, Deshaies RJ (2005) A putative stimulatory role for activator turnover in gene expression. Nature 438:113–116CrossRefPubMedGoogle Scholar
  39. Lonard DM, Nawaz Z, Smith CL, O'Malley BW (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5:939–948CrossRefPubMedGoogle Scholar
  40. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275CrossRefPubMedGoogle Scholar
  41. Melcher K, Johnston SA (1995) GAL4 interacts with TATA-binding protein and coactivators. Mol Cell Biol 15:2839–2848PubMedGoogle Scholar
  42. Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M (2005) Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells 10:693–704CrossRefPubMedGoogle Scholar
  43. Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI (2003) Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 424:1009–1013CrossRefGoogle Scholar
  44. Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201CrossRefPubMedGoogle Scholar
  45. Muratani M, Kung C, Shokat KM, Tansey WP (2005) The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120:887–899CrossRefPubMedGoogle Scholar
  46. Nalley K, Johnston SA, Kodadek T (2006) Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442:1054–1057CrossRefPubMedGoogle Scholar
  47. Navon A, Goldberg AL (2001) Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8:1339–1349CrossRefPubMedGoogle Scholar
  48. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96:1858–1862CrossRefPubMedGoogle Scholar
  49. Nickel BE, Allis CD, Davie JR (1989) Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28:958–963CrossRefPubMedGoogle Scholar
  50. Pierson-Mullany LK, Lange CA (2004) Phosphorylation of progesterone receptor serine 400 mediates ligand-independent transcriptional activity in response to activation of cyclin-dependent protein kinase 2. Mol Cell Biol 24:10542–10557CrossRefPubMedGoogle Scholar
  51. Rasti M, Grand RJ, Yousef AF, Shuen M, Mymryk JS, Gallimore PH, Turnell AS (2006) Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. EMBO J 25:2710–2722CrossRefPubMedGoogle Scholar
  52. Rubin DM, Coux O, Wefes I, Hengartner C, Young RA, Goldberg AL, Finley D (1996) Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379:655–657CrossRefPubMedGoogle Scholar
  53. Russell SJ, Sathyanarayana UG, Johnston SA (1996) Isolation and characterization of SUG2. A novel ATPase family component of the yeast 26 S proteasome. J Biol Chem 271:32810–32817CrossRefPubMedGoogle Scholar
  54. Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18:717–726CrossRefPubMedGoogle Scholar
  55. Salghetti SE, Muratani M, Wijnen H, Futcher B, Tansey WP (2000) Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 97:3118–3123CrossRefPubMedGoogle Scholar
  56. Salghetti SE, Caudy AA, Chenoweth JG, Tansey WP (2001) Regulation of transcriptional activation domain function by ubiquitin. Science 293:1651–1653CrossRefPubMedGoogle Scholar
  57. Schnappauf F, Hake SB, Camacho Carvajal MM, Bontron S, Lisowska-Grospierre B, Steimle V (2003) N-terminal destruction signals lead to rapid degradation of the major histocompatibility complex class II transactivator CIITA. Eur J Immunol 33:2337–2347CrossRefPubMedGoogle Scholar
  58. Sun L, Johnston SA, Kodadek T (2002) Physical association of the APIS complex and general transcription factors. Biochem Biophys Res Commun 296:991–999CrossRefPubMedGoogle Scholar
  59. Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108CrossRefPubMedGoogle Scholar
  60. Sundqvist A, Ericsson J (2003) Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci U S A 100:13833–13838CrossRefPubMedGoogle Scholar
  61. Swaffield JC, Bromberg JF, Johnston SA (1992) Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357:698–700CrossRefPubMedGoogle Scholar
  62. Swaffield JC, Melcher K, Johnston SA (1995) A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 374:88–91CrossRefPubMedGoogle Scholar
  63. Vavra KJ, Allis CD, Gorovsky MA (1982) Regulation of histone acetylation in Tetrahymena macro- and micronuclei. J Biol Chem 257:2591–2598PubMedGoogle Scholar
  64. vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V, Le Douarin B, Gronemeyer H, Chambon P, Losson R (1996) Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J 15:110–124PubMedGoogle Scholar
  65. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI et al (2003) The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200CrossRefGoogle Scholar
  66. Wu RC, Feng Q, Lonard DM, O'Malley BW (2007) SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129:1125–1140CrossRefPubMedGoogle Scholar
  67. Xu Q, Singer RA, Johnston GC (1995) Sug1 modulates yeast transcription activation by Cdc68. Mol Cell Biol 15:6025–6035PubMedGoogle Scholar
  68. Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX (2005) DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol 25:6154–6164CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Leung
    • 1
  • F. Geng
    • 1
  • A. Daulny
    • 1
  • G. Collins
    • 1
  • P. Guzzardo
    • 1
  • W. P. Tansey
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations