Crosstalk Between the SUMO and Ubiquitin Pathways

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2008/1)


Several ways in which the SUMO and ubiquitin pathways can intersect and communicate have recently been discovered. This review discusses the principles of crosstalk between SUMOylation and ubiquitination, focusing on the RNF4 family of RING finger E3 ubiquitin ligases, which specifically recognize SUMOylated proteins via their SUMO moiety for ubiquitination.


Acute Promyelocytic Leukemia Fission Yeast Arsenic Trioxide Ring Finger Protein SUMOylation Site 


  1. al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108:475–486PubMedGoogle Scholar
  2. Andersen PL, Xu F, Xiao W (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18:162–173CrossRefPubMedGoogle Scholar
  3. Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196CrossRefPubMedGoogle Scholar
  4. Azam M, Lee JY, Abraham V, Chanoux R, Schoenly KA, Johnson FB (2006) Evidence that the S. cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence. Nucleic Acids Res 34:506–516CrossRefPubMedGoogle Scholar
  5. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345–356CrossRefPubMedGoogle Scholar
  6. Boddy MN, Shanahan P, McDonald WH, Lopez-Girona A, Noguchi E, Yates JR, Russell P (2003) Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 23:5939–5946CrossRefPubMedGoogle Scholar
  7. Burgess RC, Rahman S, Lisby M, Rothstein R, Zhao X (2007) The Slx5/8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol Cell Biol 27:6153–6162CrossRefPubMedGoogle Scholar
  8. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278:44113–44120CrossRefPubMedGoogle Scholar
  9. Cavallo F, Astolfi A, Iezzi M, Cordero F, Lollini PL, Forni G, Calogero R (2005) An integrated approach of immunogenomics and bioinformatics to identify new tumor associated antigens (TAA) for mammary cancer immunological prevention. BMC Bioinform 6 [Suppl 4]:S7CrossRefGoogle Scholar
  10. Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595CrossRefPubMedGoogle Scholar
  11. Darst RP, Garcia SN, Koch MR, Pillus L (2007) Slx5 promotes transcriptional silencing and is required for robust growth in the absence of Sir2. Mol Cell Biol 28:1361–1372CrossRefPubMedGoogle Scholar
  12. Galili N, Nayak S, Epstein JA, Buck CA (2000) Rnf4, a RING protein expressed in the developing nervous and reproductive systems, interacts with Gscl, a gene within the DiGeorge critical region. Dev Dyn 218:102–111CrossRefPubMedGoogle Scholar
  13. Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059CrossRefPubMedGoogle Scholar
  14. Hakli M, Karvonen U, Janne OA, Palvimo JJ (2005) SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp Cell Res 304:224–233CrossRefPubMedGoogle Scholar
  15. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110CrossRefPubMedGoogle Scholar
  16. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12CrossRefPubMedGoogle Scholar
  17. Hazbun TR, Malmstrom L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR, Davis TN (2003) Assigning function to yeast proteins by integration of technologies. Mol Cell 12:1353–1365CrossRefPubMedGoogle Scholar
  18. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127CrossRefPubMedGoogle Scholar
  19. Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination and beyond. Mol Cell 28:730–738CrossRefPubMedGoogle Scholar
  20. Ii T, Fung J, Mullen JR, Brill SJ (2007a) The yeast Slx5-Slx8 DNA integrity complex displays ubiquitin ligase activity. Cell Cycle 6:2800–2809CrossRefPubMedGoogle Scholar
  21. Ii T, Mullen JR, Slagle CE, Brill SJ (2007b) Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair 6:1679–1691CrossRefPubMedGoogle Scholar
  22. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382CrossRefPubMedGoogle Scholar
  23. Kaiser FJ, Moroy T, Chang GT, Horsthemke B, Ludecke HJ (2003) The RING finger protein RNF4, a co-regulator of transcription, interacts with the TRPS1 transcription factor. J Biol Chem 278:38780–38785CrossRefPubMedGoogle Scholar
  24. Kosoy A, Calonge TM, Outwin EA, O'Connell MJ (2007) Fission yeast Rnf4 homologs are required for DNA repair. J Biol Chem 282:20388–20394CrossRefPubMedGoogle Scholar
  25. Lallemand-Breitenbach V, Jeanne M, Benhanda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARa through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10:547–555CrossRefPubMedGoogle Scholar
  26. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL (2008) Structure of the MDM 2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15:841–848CrossRefPubMedGoogle Scholar
  27. Lyngso C, Bouteiller G, Damgaard CK, Ryom D, Sanchez-Munoz S, Norby PL, Bonven BJ, Jorgensen P (2000) Interaction between the transcription factor SPBP and the positive cofactor RNF4. An interplay between protein binding zinc fingers. J Biol Chem 275:26144–26149CrossRefPubMedGoogle Scholar
  28. McDonald WH, Pavlova Y, Yates JR, Boddy MN (2003) Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J Biol Chem 278:45460–45467CrossRefPubMedGoogle Scholar
  29. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 30:610–619CrossRefPubMedGoogle Scholar
  30. Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. Covalent modification of p73alpha by SUMO-1 two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316–36323CrossRefPubMedGoogle Scholar
  31. Moilanen AM, Poukka H, Karvonen U, Hakli M, Janne OA, Palvimo JJ (1998) Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 18:5128–5139PubMedGoogle Scholar
  32. Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ (2001) Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–118PubMedGoogle Scholar
  33. Perry JJ, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Cell Biol 33:201–208Google Scholar
  34. Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Korner R, Olsen JV, Jentsch S, Melchior F, Sixma TK (2005) SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 12:264–269CrossRefPubMedGoogle Scholar
  35. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, Prives C (2007) The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J 26:90–101CrossRefPubMedGoogle Scholar
  36. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101CrossRefPubMedGoogle Scholar
  37. Raffa GD, Wohlschlegel J, Yates JR, Boddy MN (2006) SUMO-binding motifs mediate the RAD60-dependent response to replicative stress and self association. J Biol Chem 281:27973–27981CrossRefPubMedGoogle Scholar
  38. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692CrossRefPubMedGoogle Scholar
  39. Shayeghi M, Doe CL, Tavassoli M, Watts FZ (1997) Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res 25:1162–1169CrossRefPubMedGoogle Scholar
  40. Sobko A, Ma H, Firtel RA (2002) Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev Cell 2:745–756CrossRefPubMedGoogle Scholar
  41. Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–11438CrossRefPubMedGoogle Scholar
  42. Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129CrossRefPubMedGoogle Scholar
  43. Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112CrossRefPubMedGoogle Scholar
  44. Tanaka K, Nishide J, Okazaki K, Kato H, Niwa O, Nakagawa T, Matsuda H, Kawamukai M, Murakami Y (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol 19:8660–8672PubMedGoogle Scholar
  45. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374CrossRefPubMedGoogle Scholar
  46. Tatham MH, Geoffroy M-C, Shen L, Plechanovova A, Hattersely N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546CrossRefPubMedGoogle Scholar
  47. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931CrossRefPubMedGoogle Scholar
  48. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627CrossRefPubMedGoogle Scholar
  49. Uldrijan S, Pannekoek WJ, Vousden KH (2007) An essential function of the extreme C-terminus of MDM 2 can be provided by MDMX. EMBO J 26:102–112CrossRefPubMedGoogle Scholar
  50. Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175CrossRefPubMedGoogle Scholar
  51. Wang Z, Jones GM, Prelich G (2006) Genetic analysis connects SLX5 and SLX8 to the SUMO pathway in Saccharomyces cerevisiae. Genetics 172:1499–1509CrossRefPubMedGoogle Scholar
  52. Wu SM, Kuo WC, Hwu WL, Hwa KY, Mantovani R, Lee YM (2004) RNF4 is a coactivator for nuclear factor Y on GTP cyclohydrolase I proximal promoter. Mol Pharmacol 66:1317–1324CrossRefPubMedGoogle Scholar
  53. Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B (2004) Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 23:3844–3853CrossRefPubMedGoogle Scholar
  54. Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282:34176–34184CrossRefPubMedGoogle Scholar
  55. Zhang C, Roberts TM, Yang J, Desai R, Brown GW (2006) Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae. DNA Repair 5:336–346CrossRefPubMedGoogle Scholar
  56. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102:4777–4782CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Molecular and Cell Biology LaboratoryThe Salk InstituteLa JollaUSA

Personalised recommendations