Human Metabolic Phenotyping and Metabolome Wide Association Studies

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)


Metabolic phenotyping in large-scale population studies can yield crucial information regarding the impact and interaction of genetic and environmental factors with regard to the prevalence and risk of chronic diseases. Spectroscopic technologies such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) can be used to generate multi-parameter profiles of biological samples and together with automated sample delivery and mathematical modelling systems, can be used as a high throughput screening tool. The adaptation of these metabolic profiling tools from pre-clinical studies in animal models to population studies in man is explored and an overview of the current and future roles of metabolic phenotyping is described, including the idea of “Metabolome Wide Association Screening” focussing on key disease areas such as cardiovascular disease and metabolic syndrome, cancers and neurodegeneration.


Nuclear Magnetic Resonance Metabolic Profile Nuclear Magnetic Resonance Spectroscopy Multivariate Curve Resolution Personalized Health Care 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atherton HJ, Bailey NJ, Zhang W, Taylor J, Major H, Shockcor J, Clarke K, Griffin JL (2006) A combined 1H NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. J Physiol Genomics 27:178–186CrossRefGoogle Scholar
  2. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA et al. Biomarkers and surrogate end points: preferred definitions and conceptual frameworkGoogle Scholar
  3. Bailey NJ, Sampson J, Hylands PJ, Nicholson JK, Holmes E (2002) Multi-component metabolic classification of commercial feverfew preparations via high-field 1H-NMR spectroscopy and chemometrics. Planta Med 68:734–738CrossRefPubMedGoogle Scholar
  4. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30:426–432PubMedGoogle Scholar
  5. Bates GP, Mangiarini L, Mahal A, Davies SW (1997) Transgenic models of Huntington's disease. Hum Mol Genet 6:1633–1637CrossRefPubMedGoogle Scholar
  6. Bollard ME, Holmes E, Lindon JC, Mitchell SC, Branstetter D, Zhang W, Nicholson JK (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high resolution 1H NMR spectroscopy of urine and pattern recognition. Anal Biochem 295:194–202CrossRefPubMedGoogle Scholar
  7. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke LS, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444CrossRefPubMedGoogle Scholar
  8. Buck AA, Anderson RI, MacRae AA (1978) Epidemiology of poly-parasitism. I. Occurrence, frequency and distribution of multiple infections in rural communities in Chad, Peru, Afghanistan, and Zaire. Tropenmed Parasitol 29:61–70PubMedGoogle Scholar
  9. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le-Net JL, Baker D, Walley RJ, Everett JR, Nicholson JK (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1075CrossRefPubMedGoogle Scholar
  10. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H-NMR data sets. Anal Chem 77:1282–1289CrossRefPubMedGoogle Scholar
  11. Coen M, O'Sullivan M, Bubb WA, Kuchel PW, Sorrell T (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin Infect Dis 41:1582–1590CrossRefPubMedGoogle Scholar
  12. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce S, Rainville P, Stumpf CL, Nicholson JK (2006) Statistical heterospectroscopY (SHY), a new approach to the integrated analysis of NMR, UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78:363–371CrossRefPubMedGoogle Scholar
  13. Csenki L, Alm E, Torgrip RJ, Aberg RJ, Nord LI, Schuppe-Kostinen I, Lindberg J (2007) Proof of principle of a generalized fuzzy Hough transform approach to peak alignment of one dimensional 1H NMR data. Anal Bioanal Chem 389:8775–885CrossRefGoogle Scholar
  14. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Könsgen D, Dietel M, Fiehn O (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. J Mass Spectrom 41:1546–1553CrossRefGoogle Scholar
  15. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabalistic quotient normalization as a robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290CrossRefPubMedGoogle Scholar
  16. Dumas M-E, Barton RH, Toye A, Cloarec O, Craig A, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell S, Holmes E, McCarthy MI, Scott J, Gaugier D, Nicholson JK (2006a) Metabolic profiling reveals a contribution of gut microbiota to insulin resistance phenotype in mice. Proc Natl Acad Sci U S A 103:12511–12516CrossRefPubMedGoogle Scholar
  17. Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou BF, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E (2006b) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 78:2199–2208CrossRefPubMedGoogle Scholar
  18. Dumas ME, Wilder SP, Bihoreau MT, Barton RH, Fearnside JF, Argoud K, D'Amato L, Wallis RH, Blancher C, Keun HC, Baunsgaard D, Scott J, Sidelmann UG, Nicholson JK, Gauguier D (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39:666–672CrossRefPubMedGoogle Scholar
  19. Ebbels TM, Keun HC, Beckonert OP, Bollard ME, Lindon JC, Holmes E, Nicholson JK (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J Proteome Res 6:4407–4422CrossRefPubMedGoogle Scholar
  20. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmjtzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161CrossRefPubMedGoogle Scholar
  21. Fossel ET, Carr JM, McDonagh J (1986) Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma. N Engl J Med 315:1369–1376CrossRefPubMedGoogle Scholar
  22. Foxall PJ, Lenz EM, Lindon JC, Neild GH, Wilson ID, Nicholson JK (1996) Nuclear magnetic resonance and high-performance liquid chromatography-nuclear magnetic resonance studies on the toxicity and metabolism of ifosfamide. Ther Drug Monit 18:498–505CrossRefPubMedGoogle Scholar
  23. Garrod SL, Humpfer E, Spraul M, Connor SC, Polley S, Connelly J, Lindon JC, Nicholson JK, Holmes E (1999) High resolution magic-angle-spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Res Med 41:1108–1118CrossRefGoogle Scholar
  24. Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J, Alpk:ApfCD mouse. FEBS Lett 484:169–174CrossRefPubMedGoogle Scholar
  25. Glickman SE, Kilburn JO, Butler WR, Ramos LS (1994) Rapid identification of mycolic acid patterns of mycobacteria by high-performance liquid chromatography using pattern recognition software and a Mycobacterium library. J Clin Microbiol 32:740–745PubMedGoogle Scholar
  26. Gruenewald TL, Seeman TE, Ryff CD, Singer BH (2006) Early warning biomarkers: what combinations predict later life mortality? Proc Natl Acad Sci 103:14158–14163CrossRefPubMedGoogle Scholar
  27. Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrica 132:328–343Google Scholar
  28. Holmes E, Tsang TM, Huang JTJ, Leweke M, Koethe D, Gerth CW, Nolden BM Gross S, Schreiber D, Nicholson JK, Bahn S (2006) Metabolic profiling of CSF: a new tool for monitoring schizophrenia and response to therapeutic intervention. J PLOS Med 3:1420–1428Google Scholar
  29. Holmes E, Foxall PJD, Nicholson JK, Neild GH, Brown SM, Beddell CR, Sweatman BC, Rahr E, Lindon JC, Spraul M, Neidig P (1994) Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem 220:284–296CrossRefPubMedGoogle Scholar
  30. Holmes E, Loo RL, Cloarec O, Coen M, Tang H, Maibaum E, Bruce S, Chan Q, Elliott P, Stamler J, Wilson ID, Lindon JC, Nicholson JK (2007) Detectionof urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation spectroscopy. Anal Chem 79:2629–2640CrossRefPubMedGoogle Scholar
  31. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Ueshima H, Nicholson JK, Elliott P (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400CrossRefPubMedGoogle Scholar
  32. International Huntington Association and the World Federation of Neurology Research Group on Huntington's chorea (1994) Guidelines for the molecular genetics predictive test in Huntington's disease. J Med Genet. 31:555–559CrossRefGoogle Scholar
  33. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695PubMedGoogle Scholar
  34. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130:701–707CrossRefPubMedGoogle Scholar
  35. Jonsson P, Johansson ES, Wuolikainen A, Lindberg J, Schuppe-Koistinen I, Kusano M, Sjöström M, Trygg J, Moritz T, Antti H (2006) Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data – a potential tool for multi-parametric diagnosis. J Proteome Res 5:1407–1414CrossRefPubMedGoogle Scholar
  36. Kirschenlohr HL, Griffin JL, Clarke SC, Rhydwen R, Grace AA, Schofield PM, Brindle KM, Metcalfe JC Proton (2006) NMR analysis of plasma is a weak predictor of coronary artery disease. Nat Med 12:705–710CrossRefPubMedGoogle Scholar
  37. Koschorek F, Offermann W, Stelten J, Braunsdorf WE, Stellar U, Gremmel H, Liebfritz D (1993) High resolution 1H NMR spectroscopy of cerebrospinal fluid in spinal disease. Neurosurg Rev 16:302–315CrossRefGoogle Scholar
  38. Lamers RJ, DeGroot J, Spies-Faber EJ, Jellema RH, Kraus VB, Verzijl N, TeKoppele JM, Spijksma GK, Vogels JT, van der Greef J, van Nesselrooij JH (2003) Identification of disease- and nutrient-related metabolic fingerprints in osteoarthritic Guinea pigs. J Nutr 133:1776–1780PubMedGoogle Scholar
  39. Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal 33:1103–1115CrossRefPubMedGoogle Scholar
  40. Maher AD, Zirah SF, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy based metabolic phenotyping studies. Anal Chem 79:5204–5211CrossRefPubMedGoogle Scholar
  41. Marchesi J, Holmes E, Khan F, Kochhar S, Scanalan P, Shanahan F, Wilson ID, Wang Y (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551CrossRefPubMedGoogle Scholar
  42. McEwen B (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 23:921–939CrossRefPubMedGoogle Scholar
  43. Neild GH, Foxall PJ, Lindon JC, Holmes EH, Nicholson JK (1997) Uroscopy in the 21st century: high field NMR spectroscopy. Nephrol Dial Transplant 12:404–417CrossRefPubMedGoogle Scholar
  44. Nemoto T, Ando I, Kataoka T, Arifuku K, Kanazawa K, Natori Y, Fujiwara M (2007) NMR metabolic profiling combined with two-step principal component analysis for toxin-induced diabetes model rat using urine. J Toxicol Sci 32:429–435CrossRefPubMedGoogle Scholar
  45. Nicholson JK, Lindon JC, Holmes E (1999) `Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 11:181–1189Google Scholar
  46. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a generic platform for the study of drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefPubMedGoogle Scholar
  47. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL (2005) Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics. Int J Cancer 113:782–788CrossRefPubMedGoogle Scholar
  48. Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, Kültz D, Weiss RH (2007) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Anal Chem 79:6995–7004CrossRefGoogle Scholar
  49. Plumb RS, Stumpf CL, Granger JH, Castro-Perez J, Haselden JN, Dear GJ (2003) Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrom 17:2632–2638CrossRefPubMedGoogle Scholar
  50. Plumb RS, Granger JH, Stumpf CL, Johnson KA, Castro-Perez J, Wilson ID, Nicholson JK (2005) A rapid screening approach to metabonomics using UPLCand oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black and white nude mice. Analyst 130:844–849CrossRefPubMedGoogle Scholar
  51. Rantalainen M, Cloarec O, Beckonert O, Wilson ID, Jackson D, Tonge R, Rowlinson R, Rayner S, Nickson J, Wilknson RW, Mills JD, Trygg J, Nicholson JK, Holmes E (2006) Statistically integrated metabonomic-proteomic studies on human prostate cancer xenograft model in mice. J Proteome Res 5:2642–2655CrossRefPubMedGoogle Scholar
  52. Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, Berriz GF, Roth FP, Gerszten RE (2005) Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112(25):3868–3875CrossRefPubMedGoogle Scholar
  53. Saric J, Wang Y, Li JV, Coen M, Utzinger J, Marchesi JR, Keiser J, Veselkov K, Lindon JC, Nicholson JK, Holmes E (2008) Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res 7:352–360CrossRefPubMedGoogle Scholar
  54. Scanalan PD, Shanahan F, Clune Y, Collins JK, O'Sullivan GC, O'Riordan M, Holmes E, Wang Y, Marchesi J (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Env Microbiol 10:789–798CrossRefGoogle Scholar
  55. Singer BH, Utzinger J, RYff CD, Wang Y, Holmes E (2006) Exploiting the potential of metabonomics in large population studies: three venues. In: Lindon JC, Nicholson JK, Holmes E (eds) The handbook of metabonomics and metabolomics, 1st edn. Elsevier, pp. 289–327Google Scholar
  56. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, Greiner R, Sykes BD, Marrie TJ (2007) Investigations of the effects of gender, diurnal variation and age in human urinary metabolomic profiles. Anal Chem 79:6995–7004CrossRefPubMedGoogle Scholar
  57. Stamler J, Elliott P, Dennis B, Dyer A, Kesteloot H, Liu K, Ueshima H, Zhou BF, for the INTERMAP Research Group. (2003) INTERMAP: background, aim, design, methods and descriptive statistics (non-dietary). J Hum Hypertension 17:591–608CrossRefGoogle Scholar
  58. Stoyanova R, Nicholson JK, Lindon JC, Brown TR (2004) Sample classification based on Bayesian spectral decomposition of metabonomic NMR data sets. Anal Chem 76:3666–3674CrossRefPubMedGoogle Scholar
  59. Teague C, Holmes E, Maibaum E, Nicholson J, Tang H, Chan Q, Elliot P, Wilson I (2004) Ethyl glucoside in human urine following dietary exposure: detection by 1H NMR spectroscopy as a result of metabonomic screening of humans. Analyst 129:259–264CrossRefPubMedGoogle Scholar
  60. Teague CR, Dhabhar FS, Beckwith-Hall B, Holmes E, Powell J, Cobain M (2006) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093CrossRefGoogle Scholar
  61. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC (2006) Impact on analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78:4307–4318CrossRefPubMedGoogle Scholar
  62. Tsang TM, Griffin JL, Haselden J, Holmes E (2005) Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning H-1 nuclear magnetic resonance spectroscopy. Magn Res Med 53:1018–1024CrossRefGoogle Scholar
  63. Tsang TM, Huang JT, Holmes E, Bahn S (2006a) Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J Proteome Res 5:756–760CrossRefPubMedGoogle Scholar
  64. Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP Holmes E (2006b) Metabolic characterization of the R6/2 transgenic mouse model of Huntington's disease by high-resolution MAS 1H NMR spectroscopy. J Proteome Res 5:483–492CrossRefPubMedGoogle Scholar
  65. Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C et al. (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129:877–886CrossRefPubMedGoogle Scholar
  66. Vehtari A, Mäkinen VP, Soininen P, Ingman P, Mäkelä SM, Savolainen MJ, Hannuksela ML, Kaski K, Ala-Korpela M (2007) A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data. BMC Bioinformatics 8 [Suppl 2]:S8CrossRefGoogle Scholar
  67. Vilasi A, Cutillas PR, Maher AD, Zirah SF, Capasso G, Norden AW, Holmes E, Nicholson JK, Unwin RJ (2007) Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am J Physiol Renal Physiol 293:456–467CrossRefGoogle Scholar
  68. Wang Y, Holmes E, Comelli E, Fotopoulos G, Dorta G, Tang H, Rantalainen M, Lindon JC, Corthesy-Theulaz Fay LB, Kochhar S, Nicholson JK (2008) Topographical variation in metabolic signatures of human gut epithelial biopsies revealed by high-resolution magic-angle-spinning 1H NMR spectroscopy. J Proteome Res 6:3944–3951CrossRefGoogle Scholar
  69. Wang YL, Tang HR, Nicholson JK et al. (2004) Metabolomic strategy for the classification and quality control of phytomedicine: a case study of chamomile flower (Matricaria recutita L) Planta Medica 70:250–255Google Scholar
  70. Williams R, Lenz EM, Evans JA, Granger JH, Plumb RS, Stumpf CL (2005) A combined 1H NMR, HPLC-MS-based metabonomics study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J Pharm Biomed Anal 38:465–471CrossRefPubMedGoogle Scholar
  71. Williams RE, Lenz EM, Rantalainen M, Wilson ID (2006) The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol BioSystems 2:193–202CrossRefGoogle Scholar
  72. Yang C, Richardson AD, Smith JW, Osterman A (2007) Comparative metabolomics of breast cancer. Pac Symp Biocomput 181–192Google Scholar
  73. Yi LZ, He J, Liang YZ, Yuan DL, Chau FT (2006) Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS, PLS-LDA. FEBS Lett 580:6837–6845CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Divsion of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of MedicineSir Alexander Fleming BuildingLondonUK

Personalised recommendations