Pyruvate Kinase Type M2: A Key Regulator Within the Tumour Metabolome and a Tool for Metabolic Profiling of Tumours

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)


Normal proliferating cells and tumour cells in particular express the pyruvate kinase isoenzyme type M2 (M2-PK, PKM2). The quaternary structure of M2-PK determines whether the glucose carbons are degraded to pyruvate and lactate with production of energy (tetrameric form) or channelled into synthetic processes, debranching from glycolytic intermediates such as nucleic acid, amino acid and phospholipid synthesis. The tetramer:dimer ratio of M2-PK is regulated by metabolic intermediates, such as fructose 1,6-P2 and direct interaction with different oncoproteins, such as pp60v-src kinase, HPV-16 E7 and A-Raf. The metabolic function of the interaction between M2-PK and the HERC1 oncoprotein remains unknown. Thus, M2-PK is a meeting point for different oncogenes and metabolism. In tumour cells, the dimeric form of M2-PK is predominant and has therefore been termed Tumour M2-PK. Tumour M2-PK is released from tumours into the blood and from gastrointestinal tumours also into the stool of tumour patients. The quantification of Tumour M2-PK in EDTA plasma and stool is a tool for early detection of tumours and therapy control.


Pyruvate Kinase Dimeric Form Rous Sarcoma Virus Tetrameric Form Normal Proliferate Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is dedicated to Prof. Dr. Erich Eigenbrodt, head of the Comparative Biochemistry of Animals Department within the Veterinary Faculty of the University of Giessen, who significantly contributed to our knowledge of the role of M2-PK within the tumour metabolome and diagnosis and passed away in 2004.


  1. Ahmed AS, Dew T, Lawton FG, Papadopoulos AJ, Devaja O, Raju KS, Sherwood RA (2007) M2-PK as a novel marker in ovarian cancer: a prospective cohort study. Eur J Gynaec Oncol 28:83–88Google Scholar
  2. Ashizawa K, Willingham MC, Liang CM, Cheng SY (1991) In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J Biol Chem 266:16842–16846PubMedGoogle Scholar
  3. Board M, Humm S, Newsholme EA (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J 265:503–509PubMedGoogle Scholar
  4. Boros LG, Lee PW, Brandes JL, Cascante M, Muscarella P, Schirmer WJ, Melvin WS, Ellison EC (1998) Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? Med Hypothesis 50:55–59CrossRefGoogle Scholar
  5. Brahimi-Horn MC, Pouyssegur J (2007) Oxygen a source of life and stress. FEBS Lett 581:3582–3591CrossRefPubMedGoogle Scholar
  6. Brinck U, Eigenbrodt E, Oehmke M, Mazurek S, Fischer G (1994) L- and M2-pyruvate kinase expression in renal cell carcinomas and their metastases. Virchows Arch 424:177–185CrossRefPubMedGoogle Scholar
  7. Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348CrossRefPubMedGoogle Scholar
  8. Cooper JA, Reiss NA, Schwartz RJ, Hunter T (1983) Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 302:218–223CrossRefPubMedGoogle Scholar
  9. Coussens PM, Cooper JA, Hunter T, Shalloway D (1985) Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol Cell Biol 5:2753–2763PubMedGoogle Scholar
  10. Discher DJ, Bishopric NH, Wu X, Peterson CA, Webster KA (1998) Hypoxia regulates β-enolase and pyruvate kinase-M promoters by modulation Sp1/Sp3 binding to a conserved GC element. J Biol Chem 273:26087–26093CrossRefPubMedGoogle Scholar
  11. Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44:9417–9429CrossRefPubMedGoogle Scholar
  12. Eigenbrodt E, Glossmann H (1980) Glycolysis – one of the keys to cancer? Trends Pharmacol Sci 1:240–245CrossRefGoogle Scholar
  13. Eigenbrodt E, Fister P, Rübsamen H, Friis RR (1983) Influence of transformation by Rous sarcoma virus on the amount, phosphorylation and enzyme kinetic properties of enolase. EMBO J 2:1565–1570PubMedGoogle Scholar
  14. Eigenbrodt R, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis RR (1992) Double role of pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. In: Perucho M (ed) Critical reviews in oncogenesis. CRC Press, Boca Raton, FL, pp. 91–115Google Scholar
  15. Eigenbrodt E, Mazurek S, Friis R (1998) Double role of pyruvate kinase type M2 in the regulation of phosphometabolite pools. In: Bannasch P, Kanduc D, Papa S, Tager JM (eds) Cell growth and oncogenesis. Birkhäuser Verlag, Basel, pp. 15–30Google Scholar
  16. Garcia-Gonzalo FR, Cruz C, Munoz P, Mazurek S, Eigenbrodt E, Ventura F, Bartrons R, Rosa JL (2003) Interaction between HERC1 and M2-type pyruvate kinase. FEBS Lett 539:78–84CrossRefPubMedGoogle Scholar
  17. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  18. Gottfried E, Kunz-Schughart LA, Ebner S, Müller-Klieser W, Hoves S, Andreesen R, Mackensen A, Kreutz M (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021CrossRefPubMedGoogle Scholar
  19. Hardt PD, Mazurek S, Klör HU, Eigenbrodt E (2004a) Neuer Test zum Nachweis von Darmkrebs. Spiegel der Forschung 21:15–19Google Scholar
  20. Hardt PD, Mazurek S, Toepler M, Schlierbach P, Bretzel RG, Eigenbrodt E, Kloer HU (2004b) Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br J Cancer 91:980–984PubMedGoogle Scholar
  21. Hentze MW (1994) Enzymes as RNA-binding proteins: a role for (di)-nucleotide-binding domains? Trends Biochem Sci 19:101–103CrossRefPubMedGoogle Scholar
  22. Hoshino A, Hirst JA, Fujii H (2007) Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem 282:17706–17711CrossRefPubMedGoogle Scholar
  23. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77:1311–1315CrossRefPubMedGoogle Scholar
  24. Ignacak J, Stachurska MB (2003) The dual activity of pyruvate kinase type M2 from chromatin extracts of neoplastic cells. Comp Biochem Physiol Part B 134:425–433CrossRefGoogle Scholar
  25. Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ (1992) Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol 66:1329–1335PubMedGoogle Scholar
  26. Kaura B, Bagga R, Patel FD (2004) Evaluation of the pyruvate kinase isoenzyme tumor (Tu M2-PK) as a tumor marker for cervical carcinoma. J Obstet Gynaecol Res 30:193–196CrossRefPubMedGoogle Scholar
  27. Kiley SC, Clark KJ, Goodnough M, Welch DR, Jaken S (1999) Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Res 59:3230–3238PubMedGoogle Scholar
  28. Koss K, Maxton D, Jankowski JA (2008) Faecal dimeric M2 pyruvate kinase in colorectal cancer and polyps correlates with tumour staging and surgical intervention. Colorectal Dis 10:244–248CrossRefPubMedGoogle Scholar
  29. Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A, Huppert P, Schwarz M (1998) Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124:315–320CrossRefPubMedGoogle Scholar
  30. Kumar Y, Tapuria N, Kirmani N, Davidson BR (2007) Tumour M2-pyruvate kinase: a gastrointestinal cancer marker. Eur J Gastroenterol Hepatol 19:265–276CrossRefPubMedGoogle Scholar
  31. Le Mellay V, Houben R, Troppmair J, Hagemann C, Mazurek S, Frey U, Beigel J, Weber C, Benz R, Eigenbrodt E, Rapp UR (2002) Regulation of glycolysis by A-Raf protein serine/threonine kinase. Adv Enzyme Regul 42:317–332CrossRefPubMedGoogle Scholar
  32. Lobo C, Ruiz-Bellido MA, Aledo JC, Marquez J, Nunez de Castro I, Alonso FJ (2000) Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumor cells. Biochem J 348:257–261CrossRefPubMedGoogle Scholar
  33. Lüftner D, Mesterharm J, Akrivakis C, Geppert R, Petrides PE, Wernecke KD, Possinger K (2000) Tumor M2-pyruvate kinase expression in advanced breast cancer. Anticancer Res 20:5077–5082PubMedGoogle Scholar
  34. Mayr M, Chung YL, Mayr U, McGregor E, Troy H, Bayer G, Leitges M, Dunn MJ, Griffiths JR, Xu Q (2004) Loss of PKC-delta alters cardiac metabolism. Am J Pysiol Heart Circ Physiol 287:H937–H945CrossRefGoogle Scholar
  35. Mazurek S (2008) Das Tumor-Metabolom – eine Quelle von Messgrößen zur frühzeitigen Diagnose von Tumoren. In: Hardt PD (ed) Tumormarker in der Gastroenterologie. Unimed Verlag, Bremen, pp 55–65Google Scholar
  36. Mazurek S, Eigenbrodt E (2003) The tumor metabolome. Anticancer Res 23:1149–1154PubMedGoogle Scholar
  37. Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952CrossRefPubMedGoogle Scholar
  38. Mazurek S, Grimm H, Wilker S, Leib S, Eigenbrodt E (1998) Metabolic characteristics of different malignant cancer cell lines. Anticancer Res 18:3275–3282PubMedGoogle Scholar
  39. Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E (2001a) Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase and the glycolytic enzyme complex. Biochem J 356:247–256CrossRefPubMedGoogle Scholar
  40. Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E (2001b) Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene 20:6891–6898CrossRefPubMedGoogle Scholar
  41. Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E (2002) Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br J Nutr 87:S23–S29CrossRefPubMedGoogle Scholar
  42. Mazurek S, Drexler H, Troppmair J, Eigenbrodt E, Rapp UR (2007) Regulation of pyruvate kinase type M2 by A-Raf: a possible stop or go mechanism. Anticancer Res 27:3963–3971PubMedGoogle Scholar
  43. Miccheli A, Tomassini A, Puccetti C, Valerio M, Peluso G, Tuccillo F, Calvani M, Manetti C, Conti F (2006) Metabolic profiling by 13C-NMR spectroscopy: [1,2–13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie 88:437–448CrossRefPubMedGoogle Scholar
  44. Moule SK, McGivan JD (1991) Epidermal growth factor stimulates the phosphorylation of pyruvate kinase in freshly isolated rat hepatocytes. FEBS Lett 280:37–40CrossRefPubMedGoogle Scholar
  45. Münger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228CrossRefPubMedGoogle Scholar
  46. Nagy E, Rigby WF (1995) Glyceraldehyde 3-P dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann Fold). J Biol Chem 270:2755–2763CrossRefPubMedGoogle Scholar
  47. Noguchi T, Inoue H, Tanaka T (1986) The M1 and M2-type isoenzymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812PubMedGoogle Scholar
  48. Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promotors. J Biol Chem 262:14366–14371PubMedGoogle Scholar
  49. Oude Weernink PA, Rijksen G, Staal GEJ (1991) Phosphorylation of pyruvate kinase and glycolytic metabolism in three human glioma cell lines. Tumor Biol 12:339–352CrossRefGoogle Scholar
  50. Perletti GP, Marras E, Concari P, Piccinini F, Tashjian AH (1999) PKCdelta acts as growth and tumor suppressor in rat colonic epithelial cells. Oncogene 18:1251–1256CrossRefPubMedGoogle Scholar
  51. Prakash O, Bardot SF, Cole JT (2007) Chicken sarcoma to human cancers: a lesson in molecular therapeutics. Ochsner J 7:61–64Google Scholar
  52. Presek P, Glossmann H, Eigenbrodt E, Schoner W, Rübsamen H, Friis RR, Bauer H (1980) Similarities between a phosphoprotein (pp60src)-associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3′:5′-monophosphate independent protein kinase that phosphorylates pyruvate kinase type M2. Cancer Res 40:1733–1741PubMedGoogle Scholar
  53. Presek P, Reinacher M, Eigenbrodt E (1988) Pyruvate kinase type M2 is phosphorylated in tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett 242:194–198CrossRefPubMedGoogle Scholar
  54. Reinacher M, Eigenbrodt E (1981) Immunohistological demonstration of the same type of pyruvate kinase isoenzyme (M2-PK) in tumors of chicken and rat. Virchows Arch B Cell Pathol Incl Mol Pathol 37:79–88CrossRefPubMedGoogle Scholar
  55. Rosa JL, Barbacid M (1997) A giant protein that stimulates guanine nucleotide exchange on ARF1 and Rab proteins forms a cytosolic ternary complex with clathrin and Hsp70. Oncogene 15:1–6CrossRefPubMedGoogle Scholar
  56. Rosa JL, Casaroli-Marano RP, Buckler AJ, Vilaro S, Barbacid M (1996) p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. EMBO J 15:4262–4273; Corrigendum 1996: EMBO J 15:5738Google Scholar
  57. Roskoski R (2004) Src protein-tyrosine structure and regulation. Biochem Biophys Res Commun 324:1155–1164CrossRefPubMedGoogle Scholar
  58. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993CrossRefPubMedGoogle Scholar
  59. Rous P (1910) A transmissible avian neoplasm. (Sarcoma of the common Fowl). J Exp Med 12:696–705CrossRefPubMedGoogle Scholar
  60. Ryll T, Wagner R (1992) Intracellular ribonucleotide pools as a tool for monitoring the physiological state of in vitro cultivated mammalian cells during production processes. Biotechnol Bioeng 40:934–946CrossRefPubMedGoogle Scholar
  61. Schneider J, Neu K, Grimm H, Velcovsky HG, Weisse G, Eigenbrodt E (2002) Tumor M2-pyruvate kinase in lung cancer patients: immunohistochemical detection and disease monitoring. Anticancer Res 22:311–318PubMedGoogle Scholar
  62. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663CrossRefPubMedGoogle Scholar
  63. Siwko S, Mochly-Rosen D (2007) Use of a novel method to find substrates of protein kinase C delta identifies M2 pyruvate kinase. Int J Biochem Cell Biol 39:978–987CrossRefPubMedGoogle Scholar
  64. Staal GEJ, Rijksen G (1991) Pyruvate kinase in selected human tumors. In: Pretlow TG, Pretlow TP (eds) Biochemical and molecular aspects of selected cancers. Academic Press, San Diego, pp 313–337Google Scholar
  65. Steinberg P, Klingelhöffer A, Schäfer A, Wüst G, Weisse G, Oesch F, Eigenbrodt E (1999) Expression of pyruvate kinase M2 in preneoplastic hepatic foci of N-nitrosomorpholine-treated rats. Virchows Arch 434:213–220CrossRefPubMedGoogle Scholar
  66. Stetak A, Veress R, Ovadi J, Csermely P, Keri G, Ullrich A (2007) Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 67:1602–1608CrossRefPubMedGoogle Scholar
  67. Stubbs M, Bashford CL, Griffiths JR (2003) Understanding the tumor metabolic phenotype in the genomic era. Curr Mol Med 3:49–59CrossRefPubMedGoogle Scholar
  68. Warburg O, Poesener K, Negelein E (1924) Über den Stoffwechsel der Karzinomzellen. Biochem Z 152:309–344Google Scholar
  69. Wechsel HW, Petri E, Bichler KH, Feil G (1999) Marker for renal carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu M2-PK). Anticancer Res 19:2583–2590PubMedGoogle Scholar
  70. Yamada K, Noguchi T (1999) Regulation of pyruvate kinase M gene expression. Biochem Biophys Res Commun 256:257–262CrossRefPubMedGoogle Scholar
  71. Yoo BC, Ku JL, Hong SH, Shin YK, Park SY, Kim HK, Park JG (2004) Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer 108:532–539CrossRefPubMedGoogle Scholar
  72. Zhong M, Lu Z, Foster DA (2002) Downregulating PKC delta provides a PI3K/Akt-independent survival signal that overcomes apoptotic signals generated by c-src overexpession. Oncogene 21:1071–1078CrossRefPubMedGoogle Scholar
  73. Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical applications. Nat Rev Cancer 2:342–350CrossRefPubMedGoogle Scholar
  74. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E (1999) Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A 96:1291–1296CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.ScheBo Biotech AGGiessenGermany
  2. 2.Institute for Biochemistry and Endocrinology, Veterinary FacultyUniversity of GiessenGiessenGermany

Personalised recommendations