Advertisement

Biomarker Discovery for Drug Development and Translational Medicine Using Metabonomics

  • H. C. Keun
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)

Abstract

There exists at present an urgent desire for better biomarkers, especially in the context of pharmaceutical drug development and in the detection and management of disease. Many researchers in the area of biomarker discovery and development have turned to the “-omics” sciences as a way of addressing these needs. Metabolic profiling, or metabonomics, defines the metabolic phenotype and offers a source of novel biomarkers that have better potential to translate effectively. This review will discuss the broad philosophy and motivations behind metabonomics, and illustrate the case with applications relevant to pharmaceutical development and patient management. Particular focus will be paid to the potential of metabonomics to contribute to biomarker discovery in toxicology and cancer research.

Keywords

Metabolic Profile Metabolic Phenotype Choline Kinase Renal Papillary Necrosis Metabonomic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Mr. Danny Yakoub and Dr. Mary Bollard for their help in the production of the figures, and Miss Alexandra Backshall for proof-reading the manuscript.

References

  1. Al-Saffar NMS, Troy H, Ramirez de Molina A et al. (2006) Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res 66:427–434CrossRefPubMedGoogle Scholar
  2. Anthony ML, Sweatman BC, Beddell CR et al. (1994) Pattern-recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear-magnetic-resonance spectra of urine. Mol Pharmacol 46:199–211PubMedGoogle Scholar
  3. Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. Int J Oncol 23:17–28PubMedGoogle Scholar
  4. Baggerly KA, Morris JS, Edmonson SR et al. (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309CrossRefPubMedGoogle Scholar
  5. Beger RD, Schnackenberg LK et al. (2006) Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2:125–134CrossRefGoogle Scholar
  6. Brindle JT, Antti H, Holmes E et al. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. Nat Med 8:1439–1444CrossRefPubMedGoogle Scholar
  7. Bundy JG, Iyer NG, Gentile MS et al. (2006) Metabolic consequences of p300 gene deletion in human colon cancer cells. Cancer Res 66:7606–7614CrossRefPubMedGoogle Scholar
  8. Cheng LL, Burns MA, Taylor JL et al. (2005) Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res 65:3030–3034PubMedGoogle Scholar
  9. Clayton TA, Lindon JC, Cloarec O et al. (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440:1073–1077CrossRefPubMedGoogle Scholar
  10. Coen M, Hong YS, Clayton TA et al. (2007) The mechanism of galactosamine toxicity revisited: a metabonomic study. J Proteome Res 6:2711–2719CrossRefPubMedGoogle Scholar
  11. Connor SC, Hodson MP, Ringeissen S et al. (2004a) Development of a multivariate statistical model to predict peroxisome proliferation in the rat, based on urinary H-1-NMR spectral patterns. Biomarkers 9:364–385CrossRefPubMedGoogle Scholar
  12. Connor SC, Wu W, Sweatman BC et al. (2004b) Effects of feeding and body weight loss on the H-1-NMR-based urine metabolic profiles of male Wistar Han rats: implications for biomarker discovery. Biomarkers 9:156–179CrossRefPubMedGoogle Scholar
  13. Denkert C, Budczies J, Kind T et al. (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:10795–10804CrossRefPubMedGoogle Scholar
  14. Dieterle F, Schlotterbeck GT, Ross A et al. (2006) Application of metabonomics in a compound ranking study in early drug development revealing drug-induced excretion of choline into urine. Chem Res Toxicol 19:1175–1181CrossRefPubMedGoogle Scholar
  15. Dumas ME, Wilder SP, Bihoreau MT et al. (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39:666–672CrossRefPubMedGoogle Scholar
  16. Ebbels T, Keun H et al. (2003) Toxicity classification from metabonomic data using a density superposition approach: `CLOUDS'. Anal Chim Acta 490:109–122CrossRefGoogle Scholar
  17. Ebbels TMD, Keun HC, Beckonert OP et al. (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the Consortium on Metabonomic Toxicology screening approach. J Proteome Res 6:4407–4422Google Scholar
  18. Fossel ET, Carr JM, McDonagh J (1986) Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma. N Engl J Med 315:1369–1376Google Scholar
  19. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580CrossRefPubMedGoogle Scholar
  20. Fricke ST, Rodriguez O, Vanmeter J et al. (2006) In vivo magnetic resonance volumetric and spectroscopic analysis of mouse prostate cancer models. Prostate 66:708–717CrossRefPubMedGoogle Scholar
  21. Gartland KPR, Anthony ML, Beddell CR et al. (1990) Proton Nmr-studies on the effects of uranyl-nitrate on the biochemical-composition of rat urine and plasma. J Pharmaceut Biomed Anal 8:951–954CrossRefGoogle Scholar
  22. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  23. Glunde K, Jie C, Bhujwall ZM (2004) Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res 64:4270–4276CrossRefPubMedGoogle Scholar
  24. Glunde K, Raman V, Mori N et al. (2005) RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 65:11034–11043CrossRefPubMedGoogle Scholar
  25. Glunde K, Jacobs MA, Bhujwall ZM (2006) Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 6:821–829CrossRefPubMedGoogle Scholar
  26. Gooderham NJ, Lauber SN, Lauber SN et al. (2006) Mechanisms of action of carcinogenic heterocyclic amines. Toxicol Lett 164:S61–S62CrossRefGoogle Scholar
  27. Holmes E, Bonner FW, Sweatman BC et al. (1992) Nuclear-magnetic-resonance spectroscopy and pattern-recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(Ii) chloride and 2-bromoethanamine. Mol Pharmacol 42:922–930PubMedGoogle Scholar
  28. Holmes E, Tsang TM, Huang JT et al. (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. Plos Medicine 3:e327CrossRefPubMedGoogle Scholar
  29. Iorio E, Mezzanzanica D, Alberti P et al. (2005) Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res 65:9369–9376CrossRefPubMedGoogle Scholar
  30. Ito S, Ohga T, Saeki H et al. (2005) p53 mutation profiling of multiple esophageal carcinoma using laser capture microdissection to demonstrate field carcinogenesis. Int J Cancer 113:22–28CrossRefPubMedGoogle Scholar
  31. Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton MRS in characterizing breast lesions. Radiology 225:650–651Google Scholar
  32. Keun HC (2006) Metabonomic modeling of drug toxicity. Pharmacol Ther 109:92–106CrossRefPubMedGoogle Scholar
  33. Keun HC, Athersuch TJ (2007) Application of metabonomics in drug development. Pharmacogenomics 8:731–741CrossRefPubMedGoogle Scholar
  34. Keun HC, Ebbels TMD et al. (2002) Analytical reproducibility in H-1 NMR-based metabonomic urinalysis. Chem Res Toxicol 15:1380–1386CrossRefPubMedGoogle Scholar
  35. Keun HC, Ebbels TMD et al. (2004) Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem Res Toxicol 17:579–587CrossRefPubMedGoogle Scholar
  36. Lindon JC, Nicholson JK, Holmes E et al. (2003) Contemporary issues in toxicology – the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 187:137–146CrossRefPubMedGoogle Scholar
  37. Lindon JC, Keun HC, Ebbels TM et al (2005) The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6:691–699CrossRefPubMedGoogle Scholar
  38. Makinen VP, Soininen P et al. (2007) Cardiovascular risk factors in type 1 diabetes: a metabonomic study by 1H NMR spectroscopy of serum. Atherosclerosis Suppl 8:218–218CrossRefGoogle Scholar
  39. Matoba S, Kang JG, Patino WD et al. (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653CrossRefPubMedGoogle Scholar
  40. Mortishire-Smith RJ, Skiles GL, Lawrence JW et al. (2004) Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chem Res Toxicol 17:165–173CrossRefPubMedGoogle Scholar
  41. Nicholson JK, Lindon JC, Holmes E (1999) `Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefPubMedGoogle Scholar
  42. Nicholson JK, Connelly J, Lindon JC et al. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefPubMedGoogle Scholar
  43. Nicholson JK, Holmes E, Lindon JC et al. (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22:1268–1274CrossRefPubMedGoogle Scholar
  44. Nicholson JK, Holmes E, Lindon JC et al. (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438CrossRefPubMedGoogle Scholar
  45. Odunsi K, Wollman RM, Ambroson CB et al. (2005) Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics. Int J Cancer 113:782–788CrossRefPubMedGoogle Scholar
  46. Okunieff P, Zietman A, Kahn J et al (1990) Lack of efficacy of water-suppressed proton nuclear-magnetic-resonance spectroscopy of plasma for the detection of malignant tumors. N Engl J Med 322:953–958CrossRefPubMedGoogle Scholar
  47. Petricoin EF, Ardekani AM, Hitt BA et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577CrossRefPubMedGoogle Scholar
  48. Pollard PJ, Briere JJ, Alam NA et al. (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1 alpha in tumours which result from germline FH, SDH mutations. Human Molr Genet 14:2231–2239CrossRefGoogle Scholar
  49. Raamsdonk LM, Teusink B, Broadhurst D et al. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50CrossRefPubMedGoogle Scholar
  50. Ransohoff DF (2005) Opinion – bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 5:142–149CrossRefPubMedGoogle Scholar
  51. Ratnam S, Kent C (1995) Early increase in choline kinase-activity upon induction of the H-Ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys 323:313–322CrossRefPubMedGoogle Scholar
  52. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822CrossRefPubMedGoogle Scholar
  53. Robertson DG, Reily MD, Sigler RE et al. (2000) Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci 57:326–337CrossRefPubMedGoogle Scholar
  54. Sanins SM, Nicholson JK, Elcombe C et al. (1990) Hepatotoxin-induced hypertaurinuria – a proton Nmr study. Arch Toxicol 64:407–411CrossRefPubMedGoogle Scholar
  55. Tate AR, Underwood J, Acosta DM et al. (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. Nmr Biomed 19:411–434CrossRefPubMedGoogle Scholar
  56. Teahan O, Gamble S, Holmes E et al. (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78:4307–4318CrossRefPubMedGoogle Scholar
  57. Teichert F, Verschoyle RD et al. (2008) Metabolic Profiling of Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tissue by 1H-NMR analysis – evidence for unusual phospholipid metabolism. ProstateGoogle Scholar
  58. Tsang TA, Woodman B et al. (2006) Metabolic characterization of the R6/2 transgenic mouse model of Huntington's disease by high-resolution MAS H-1 NMR spectroscopy. J Proteome Res 5:483–492CrossRefPubMedGoogle Scholar
  59. Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4:237–241CrossRefPubMedGoogle Scholar
  60. Ushijima T (2007) Epigenetic field for cancerization. J Biochem Mol Biol 40:142–150PubMedGoogle Scholar
  61. Vineis P, Perera F (2007) Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomarkers Prev 16:1954–1965CrossRefPubMedGoogle Scholar
  62. Wang YL, Utzinger J, Xiao SH et al. (2006) System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster. Mol Biochem Parasitol 146:1–9CrossRefPubMedGoogle Scholar
  63. Waters NJ, Waterfield CJ, Farrant RD et al. (2006) Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity: novel induction of 5-oxoprolinosis. J Proteome Res 5:1448–1459CrossRefPubMedGoogle Scholar
  64. Wevers RA, Engelke UFH et al. (1999) H-1-NMR spectroscopy of body fluids: inborn errors of purine and pyrimidine metabolism. Clin Chem 45:539–548PubMedGoogle Scholar
  65. Wheatley DN (2005) Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Semin Cancer Biol 15:247–253CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and AnaestheticsImperial College Faculty of MedicineSouth Kensington, LondonUK

Personalised recommendations