Using Metabolomics to Monitor Anticancer Drugs

  • Y.-L. Chung
  • J. R. Griffiths
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)


The metabolome of a cancer cell is likely to show changes after responding to an anticancer drug. These changes could be used to decide whether to continue treatment or, in the context of a drug trial, to indicate whether the drug is working and perhaps its mechanism of action. (Nuclear) magnetic resonance spectroscopy (NMR/MRS) methods can offer important insights into novel anticancer agents in order to accelerate the drug development process including time-course studies on the effect of a drug on its site of action (termed pharmacodynamics), in this case the cancer. In addition, some classes of anticancer agents currently under development (e.g. antiangiogenics) are designed to be used in combination with other drugs and will not cause tumour shrinkage when used as single agents in Phase 1 clinical trials. Thus NMR/MRS may have a special role in monitoring the pharmacodynamic actions of such drugs in early-phase clinical trials. This review focuses on the use of ex vivo NMR and in vivo MRS methods for monitoring the effect of some novel anticancer drugs on the cancer metabolome. Ex vivo NMR methods are complementary to in vivo measurements, as they can provide additional information and help in the interpretation of the in vivo data.


Nuclear Magnetic Resonance Magnetic Resonance Spectroscopy Tumour Extract HT29 Tumour HT29 Xenograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboagye EO, Bhujwalla ZM (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 59:80–84PubMedGoogle Scholar
  2. Ackerstaff E, Glunde K, Bhujwalla ZM (2003) Choline phospholipid metabolism: a target in cancer cells? J Cellular Biochem 90:525–533CrossRefGoogle Scholar
  3. Al-Saffar NMS, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR, Leach MO, Workman P, Lacal JC, Judson IR, Chung Y-L (2006) Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res 66:427–434CrossRefPubMedGoogle Scholar
  4. Al-Saffar NMS, Jackson LE, Raynaud F, de Molina AM, Lacal JC, Workman P, Leach MO (2007) PI3K inhibition using a novel inhibitor deregulates choline kinase resulting in PC depletion detected by MRS. Proceedings of ISMRM, pp. 125Google Scholar
  5. Beauregard DA, Hill SA, Chaplin DJ, Brindle KM (2001) The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability. Cancer Res 61:6811–6815PubMedGoogle Scholar
  6. Beloueche-Babari M, Jackson LE, Al-Saffar NMS, Workman P, Leach MO, Ronen SM (2005) Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition. Cancer Res 65:3356–3363PubMedGoogle Scholar
  7. Beloueche-Babari M, Jackson LE, Al-Saffar NMS, Eccles SA, Raynaud FI, Workman P, Leach MO, Ronen SM (2006) Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol Cancer Ther 5:187–196CrossRefPubMedGoogle Scholar
  8. Chen AP, Grem JL (1992) Antimetabolites. Curr Opin Oncol 4:1089–1098CrossRefPubMedGoogle Scholar
  9. Chung Y-L, Troy H, Judson IR, Leach MO, Stubbs M, Ronen S, Workman P, Griffiths JR (2002) The effects of CYC202 on tumors monitored by magnetic resonance spectroscopy. Proceedings of AACR, pp. 1664Google Scholar
  10. Chung Y-L, Troy H, Banerji U, Jackson LE, Walton MI, Stubbs M, Griffiths JR, Judson IR Leach MO, Workman P, Ronen SM (2003) Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino, 17-demethoxygeldanamycin (17AAG) in human colon cancer models. J Natl Cancer Inst 95:1624–1633PubMedGoogle Scholar
  11. Chung Y-L, Troy H, Kristeleit R, Aherne W, Judson IR, Atadja P, Workman P, Leach MO, Griffiths JR (2007) MRS pharmacodynamic markers of a novel histone deacetylase inhibitor LAQ824, in a human colon carcinoma model. Proceedingc of ISMRM, pp. 2823Google Scholar
  12. De Certaines JD, Larsen VA, Podo F, Carpinelli G, Briot O, Henriksen O (1993) In vivo 31P MRS of experimental tumours. NMR Biomed 6:345–365CrossRefPubMedGoogle Scholar
  13. Evanochko WT, Sakai TT, Ng TC, Krishna NR, Kim HD, Zeidler RB, Ghanta VK, Brockman RW, Schiffer LM, Braunschweiger PG et al. (1984) NMR study of in vivo RIF-1 tumors. Analysis of perchloric acid extracts and identification of 1H, 31P and 13C resonances. Biochim Biophys Acta 805:104–116CrossRefPubMedGoogle Scholar
  14. Govindaraju V, Young K, Maudsley A (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153CrossRefPubMedGoogle Scholar
  15. Heerschap A, Jager GJ, van der Graaf M, Barentsz JO, de la Rosette JJ, Oosterhof GO, Ruijter ET, Ruijs SH (1997) In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res 17:1455–1460PubMedGoogle Scholar
  16. Jordan BF, Black K, Robey IF, Runquist M, Powis G, Gillies RJ (2005) Metabolite changes in HT-29 xenograft tumors following HIF-1α inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed 18:430–439CrossRefPubMedGoogle Scholar
  17. MacPhail LB, Chung Y-L, Madhu B, Clark S, Griffiths SR, Kelland LR, Robinson SP (2005) An investigation of tumor dose response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), using in vivo magnetic resonance spectroscopy. Clin Cancer Res 11:3705–3713CrossRefGoogle Scholar
  18. Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP (2006) The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 8:560–567CrossRefPubMedGoogle Scholar
  19. Mahon MM, Cox IJ, Dina R, Soutter WP, McIndoe GA, Williams AD, deSouza NM (2004a) 1H magnetic resonance spectroscopy of preinvasive and invasive cervical cancer: in vivo-ex vivo profiles and effect of tumor load. J Magn Reson Imaging 19:356–364CrossRefPubMedGoogle Scholar
  20. Mahon MM, Williams AD, Soutter WP, Cox IJ, McIndoe GA, Coutts GA, Dina R, deSouza NM (2004b) 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration. NMR Biomed 17:1–9CrossRefPubMedGoogle Scholar
  21. Maxwell RJ, Nielsen FU, Breidahl T, Stødkilde-Jørgensen H, Horsman MR (1998) Effects of combretastatin on murine tumours monitored by 31P MRS, 1H MRS and 1H MRI. Int J Radiat Oncol Biol Phys 42:891–894CrossRefPubMedGoogle Scholar
  22. Milkevitch M, Shim H, Pilatus U, Pickup S, Wehrle JP, Samid D, Poptani H, Glickson JD, Delikatny EJ (2005) Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochim Biophys Acta 1734:1–12PubMedGoogle Scholar
  23. Morse DL, Raghunand N, Sadarangani P, Murthi S, Job C, Day S, Howison C, Gillies RJ (2007) Response of choline metabolites to docetaxel therapy is quantified in vivo by localized 31P MRS of human breast cancer xenografts and in vitro by high-resolution 31P NMR spectroscopy of cell extracts. Magn Reson Med 58:270–280CrossRefPubMedGoogle Scholar
  24. Murphy PS, Viviers L, Abson C, Rowland IJ, Brada M, Leach MO, Dzik-Jurasz AS (2004) Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br J Cancer 90:781–786CrossRefPubMedGoogle Scholar
  25. Neckers L (2002) Hsp90 inhibitions as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S60CrossRefPubMedGoogle Scholar
  26. Negendank WG (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324CrossRefPubMedGoogle Scholar
  27. Nelson C, Moffat B, Jacobsen N, Henzel WJ, Stults JT, King KL, McMurtrey A, Vandlen R, Spencer SA (1996) Glycerophosphoethanolamine (GPEA) identified as an hepatocyte growth stimulator in liver extracts. Exp Cell Res 229:20–26CrossRefPubMedGoogle Scholar
  28. Podo F (1999) Tumor phospholipid metabolism. NMR Biomed 12:413–439CrossRefPubMedGoogle Scholar
  29. Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R (2004) The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor reception tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 64:6626–6634CrossRefPubMedGoogle Scholar
  30. Ross J, Tong WP, Kaluarachi K, Ronen SM (2007) Detection of metabolic effects of fatty acid synthase inhibition by magnetic resonance spectroscopy. Proceedings of ISMRM, pp. 121Google Scholar
  31. Sankaranarayanapillai M, Tong WP, Maxwell DA, Pal A, Pang J, Bornmann WG, Gelovani JG, Ronen SM (2006) Detection of histone deacetylase inhibition by noninvasive magnetic resonance spectroscopy. Mol Cancer Ther 5:1325–1334CrossRefPubMedGoogle Scholar
  32. Sankaranarayanapillai M, Kaluarachchi K, Ronen SM (2007a) 13C MRS detection of increased choline metabolism following HDAC inhibition. Proceedings of ISMRM, pp. 123Google Scholar
  33. Sankaranarayanapillai M, Bankson JA, Yuan Q, Dafni H, Webb D, Pal A, Jackson EF, Gelovani J, Tong WP, Ronen SM (2007b) In vivo detection of histone deacetylase inhibition by MRS. Proceedings of ISMRM, pp. 2990Google Scholar
  34. Shungu DC, Bhujwalla ZM, Wehrle JP, Glickson JD (1992) 1H NMR spectroscopy of subcutaneous tumors in mice: preliminary studies of effects of growth, chemotherapy and blood flow reduction. NMR Biomed 5:296–302CrossRefPubMedGoogle Scholar
  35. Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 15:327–337CrossRefPubMedGoogle Scholar
  36. Sreedhar AS, Mihaly K, Pato B, Schnaider T, Stetak A, Kis-Petik K, Fidy J, Simonics T, Maraz A, Csermely P (2003) Hsp90 inhibition accelerates cell lysis: anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Bio Chem 278:35231–35240CrossRefGoogle Scholar
  37. Street JC, Mahmood U, Matei C, Koutcher JA (1995) In vivo and in vitro studies of cyclophosphamide chemotherapy in a mouse mammary carcinoma by 31P NMR spectroscopy. NMR Biomed 8:149–158CrossRefPubMedGoogle Scholar
  38. Street JC, Alfieri AA, Tragano F, Koutcher JA (1997) In vivo and ex vivo study of metabolic and cellular effects of 5-fluorouracil chemotherapy in a mouse mammary carcinoma. Magn Reson Imaging 15:587–596CrossRefPubMedGoogle Scholar
  39. Troy H, Chung Y-L, Judson IR, Leach MO, Stubbs M, Ronen S, Workman P, Griffiths JR (2002) The effects of the novel anticancer compound CYC202 on tumors monitored by magnetic resonance spectroscopy. Proceedings of ISMRM, pp. 2163Google Scholar
  40. Vaidya S, Chung Y-L, Payne G, Leach M, Griffiths J, Pinkerton R (2003) Magnetic resonance spectroscopy studies of xenografted paediatric embryonal rhabdomyosarcoma. Br J Cancer 88 [Suppl 1]:517Google Scholar
  41. Zakian KL, Eberhardt S, Hricak H, Shukla-Dave A, Kleinman S, Muruganandham M, Sircar K, Kattan MW, Reuter VE, Scardino PT, Koutcher JA (2003) Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging – initial results. Radiology 229:241–247CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institute of Cancer ResearchBelmont, SurreyUK
  2. 2.Cancer Research UKLi Ka Shing Centre, Cancer Research UK Cambridge Research InstituteCambridgeUK

Personalised recommendations