Mitochondria and Cancer

  • P. Rustin
  • G. Kroemer
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)


Mitochondria contained in cancer cells exhibit two major alterations. First, they are often relatively resistant to the induction of mitochondrial membrane permeabilization (MMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. The mechanisms of MMP resistance have come under close scrutiny because apoptosis resistance constitutes one of the essential hallmarks of cancer. Second, cancer cell mitochondria often exhibit a reduced oxidative phosphorylation, meaning that ATP is generated through the conversion of glucose to pyruvate and excess pyruvate is then eliminated as the waste product lactate. This glycolytic mode of energy production is even observed in conditions of high oxygen tension and is hence called anaerobic glycolysis. Here, we discuss the molecular mechanisms accounting for inhibition of the mitochondrial apoptosis pathway in neoplasia and discuss possible mechanistic links between MMP resistance and anaerobic glycolysis.


Outer Mitochondrial Membrane Anaerobic Glycolysis Mitochondrial Membrane Permeabilization Permeability Transition Pore Complex SDHD Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



G. Kroemer is supported by Ligue Nationale Contre le Cancer (équipe labellisée), the European Union (Active p53, ChemoRes, DeathTrain, TransDeath, RIGHT), Cancéropôle Ile-de-France, Institut National du Cancer, and the Agence Nationale pour la Recherche. P. Rustin is supported by Association Contre les Maladies Mitochondriales et Association Française Contre les Myopathies, Leducq Foundation (CarDiaNet), and the European Union (Eumitocombat).


  1. Adams JM, Cory S (2007a) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337CrossRefPubMedGoogle Scholar
  2. Adams JM, Cory S (2007b) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496CrossRefPubMedGoogle Scholar
  3. Aslan M, Ozben T (2003) Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid Redox Signal 5:781–788CrossRefPubMedGoogle Scholar
  4. Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER, Evans DG, Eng C, Latif F, Maher ER (2001) Germline SDHD mutation in familial phaeochromocytoma. Lancet 357:1181–1182CrossRefPubMedGoogle Scholar
  5. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851CrossRefPubMedGoogle Scholar
  6. Belzacq AS, Vieira HL, Verrier F, Vandecasteele G, Cohen I, Prevost MC, Larquet E, Pariselli F, Petit PX, Kahn A et al (2003) Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res 63:541–546PubMedGoogle Scholar
  7. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662CrossRefPubMedGoogle Scholar
  8. Brenner C, Kroemer G (2000) Apoptosis. Mitochondria – the death signal integrators. Science 289:1150–1151CrossRefPubMedGoogle Scholar
  9. Briere JJ, Favier J, Benit P, El Ghouzzi V, Lorenzato A, Rabier D, Di Renzo MF, Gimenez-Roqueplo AP, Rustin P (2005a) Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet 14:3263–3269CrossRefPubMedGoogle Scholar
  10. Briere JJ, Favier J, Ghouzzi VE, Djouadi F, Benit P, Gimenez AP, Rustin P (2005b) Succinate dehydrogenase deficiency in human. Cell Mol Life Sci 62:2117–2314CrossRefGoogle Scholar
  11. Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 74:3735–3739CrossRefPubMedGoogle Scholar
  12. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18CrossRefPubMedGoogle Scholar
  13. Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053CrossRefPubMedGoogle Scholar
  14. Decaudin D, Castedo M, Nemati F, Beurdeley-Thomas A, De Pinieux G, Caron A, Pouillart P, Wijdenes J, Rouillard D, Kroemer G, Poupon MF (2002) Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res 62:1388–1393PubMedGoogle Scholar
  15. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–185CrossRefPubMedGoogle Scholar
  16. Favier J, Briere JJ, Strompf L, Amar L, Filali M, Jeunemaitre X, Rustin P, Gimenez-Roqueplo AP (2005) Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm Res 63:171–179Google Scholar
  17. Fulda S, Debatin KM (2006) Resveratrol modulation of signal transduction in apoptosis and cell survival: a mini-review. Cancer Detect Prev 30:217–223CrossRefPubMedGoogle Scholar
  18. Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830CrossRefPubMedGoogle Scholar
  19. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243CrossRefPubMedGoogle Scholar
  20. Geromel V, Kadhom N, Cebalos-Picot I, Ouari O, Polidori A, Munnich A, Rotig A, Rustin P (2001) Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA. Hum Mol Genet 10:1221–1228CrossRefPubMedGoogle Scholar
  21. Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, Rotig A, Jeunemaitre X (2001) The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 69:1186–1197CrossRefPubMedGoogle Scholar
  22. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77CrossRefPubMedGoogle Scholar
  23. Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257CrossRefPubMedGoogle Scholar
  24. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106CrossRefPubMedGoogle Scholar
  25. Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128CrossRefPubMedGoogle Scholar
  26. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136CrossRefPubMedGoogle Scholar
  27. Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632CrossRefPubMedGoogle Scholar
  28. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287PubMedGoogle Scholar
  29. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 [Suppl 2]:1463–1467Google Scholar
  30. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163CrossRefPubMedGoogle Scholar
  31. Le Bras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E, Lecellier G, Rebouillat D, Lemaire C, Kroemer G et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66:9143–9152CrossRefPubMedGoogle Scholar
  32. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med 36:1–12PubMedGoogle Scholar
  33. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489CrossRefPubMedGoogle Scholar
  34. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157CrossRefPubMedGoogle Scholar
  35. Lu YP, Lou YR, Yen P, Newmark HL, Mirochnitchenko OI, Inouye M, Huang MT (1997) Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase. Cancer Res 57:1468–1474PubMedGoogle Scholar
  36. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, Watson DG, Gottlieb E (2007) Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289CrossRefPubMedGoogle Scholar
  37. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270CrossRefPubMedGoogle Scholar
  38. Nishikawa M, Hashida M (2006) Inhibition of tumour metastasis by targeted delivery of antioxidant enzymes. Expert Opin Drug Deliv 3:355–369CrossRefPubMedGoogle Scholar
  39. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681CrossRefPubMedGoogle Scholar
  40. Pedersen PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222Google Scholar
  41. Piva R, Liu J, Chiarle R, Podda A, Pagano M, Inghirami G (2002) In vivo interference with Skp1 function leads to genetic instability and neoplastic transformation. Mol Cell Biol 22:8375–8387CrossRefPubMedGoogle Scholar
  42. Poncet D, Pauleau AL, Szabadkai G, Vozza A, Scholz SR, Le Bras M, Briere JJ, Jalil A, Le Moigne R, Brenner C et al (2006) Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. J Cell Biol 174:985–996CrossRefPubMedGoogle Scholar
  43. Rustin P (2002) Mitochondria, from cell death to proliferation. Nat Genet 30:352–353CrossRefPubMedGoogle Scholar
  44. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85CrossRefPubMedGoogle Scholar
  45. Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman PS, Ishii N (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276:41553–41558CrossRefPubMedGoogle Scholar
  46. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341CrossRefPubMedGoogle Scholar
  47. Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med 186:25–37CrossRefPubMedGoogle Scholar
  48. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446CrossRefPubMedGoogle Scholar
  49. Tomiyama A, Serizawa S, Tachibana K, Sakurada K, Samejima H, Kuchino Y, Kitanaka C (2006) Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak. J Natl Cancer Inst 98:1462–1473CrossRefPubMedGoogle Scholar
  50. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, Leigh I, Gorman P, Lamlum H, Rahman S et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410CrossRefPubMedGoogle Scholar
  51. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840CrossRefPubMedGoogle Scholar
  52. Warburg O, Poesener K, Negelein E (1924) Über den Stoffwechsel der Tumoren [On metabolism of tumors]. Biochem Z 152:319–344Google Scholar
  53. Warburg O, Wind F, Negelein E (1926) The metabolism of tumors in the body. J Gen Physiol 8:519CrossRefGoogle Scholar
  54. Welsh SJ, Bellamy WT, Briehl MM, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089–5095PubMedGoogle Scholar
  55. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868CrossRefPubMedGoogle Scholar
  56. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132CrossRefPubMedGoogle Scholar
  57. Yang QH, Xu JN, Xu RK, Pang SF (2007) Antiproliferative effects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res 42:172–179CrossRefPubMedGoogle Scholar
  58. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2:67–71CrossRefPubMedGoogle Scholar
  59. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544CrossRefPubMedGoogle Scholar
  60. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176PubMedGoogle Scholar
  61. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Hopital Robert DebreINSERM, U676ParisFrance
  2. 2.Institut Gustave RoussyINSERM, U848VillejuifFrance

Personalised recommendations