New Developments in Enantioselective Brønsted Acid Catalysis: Chiral Ion Pair Catalysis and Beyond

  • M. Rueping
  • E. Sugiono
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/2)


The design of catalytic reactions that proceed with high enantioselectivity is an important goal in organic synthesis. Increased interest in this research area has resulted in substantial progress, particularly in the field of metal catalyzed transformations. In recent years small organic molecules have been used as organocatalysts for a variety of enantioselective reactions. Among these, secondary amine catalysts are the most widely applied and can be used in the activation of the nucleophilic component through enamine formation (enamine catalysis), or by formation of an iminum intermediate to activate the electrophile (iminium catalysis). Additionally, chiral diols and thioureas, as well as carbene- and DMAP-derivatives (hydrogen bonding-, nucleophilic catalysis), have been shown to be versatile catalysts for enantioselective transformations. An alternative to these strategies is the activation of an electrophile or nucleophile by use of a chiral Brønsted acid. Compared to amino-, carbene-, pyridine- and hydrogen-bonding catalyzed transformations, enantioselective Brønsted acid catalysis has only recently emerged as important and promising area of research. In the course of our research program we were able to contribute significantly to the field of enantioselective Brønsted acid catalysis over the last 2 years, and could demonstrate for the first time that in various enantioselective transformations chiral Brønsted acid catalysts can give better or at least comparable results to metal-catalyzed processes. In this chapter we will highlight some of our most recent results and will, additionally, describe how we initially entered the field of asymmetric Brønsted acid catalysis by starting of from a biomimetic approach using nature as a role model.


Transfer Hydrogenation Reductive Amination Mannich Reaction Enantioselective Hydrogenation Chiral Amine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achari B, Mandal SB, Dutta PK, Chowdhury C (2004) Synlett 2004:2449Google Scholar
  2. Aggarwal VK, Belfield AJ (2003) Catalytic asymmetric Nazarov reactions promoted by chiral Lewis acid complexes. Org Lett 5:5075–5078Google Scholar
  3. Akiyama T, Itoh J, Fuchibe K (2006c) Adv Synth Catal 348:999Google Scholar
  4. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew Chem Int Ed Engl 43:1566–1568Google Scholar
  5. Akiyama T, Morita H, Itoh J, Fuchibe K (2005a) Chiral Brønsted acid catalyzed enantioselective hydrophosphonylation of imines: asymmetric synthesis of alpha-amino phosphonates. Org Lett 7:2583–2585Google Scholar
  6. Akiyama T, Morita H, Fuchibe K (2006b) Chiral Brønsted acid-catalyzed inverse electron-demand aza Diels–Alder reaction. J Am Chem Soc 128:13070–13071Google Scholar
  7. Akiyama T, Saitoh Y, Morita H, Fuchibe K (2005b) Adv Synth Catal 347:1523Google Scholar
  8. Akiyama T, Tamura Y, Itoh J, Morita H, Fuchibe K (2006a) Synlett 2006:141Google Scholar
  9. Arend M (1999) Asymmetric catalytic aminoalkylations: new powerful methods for the enantioselective synthesis of amino acid derivatives, Mannich bases, and homoallylic amines. Angew Chem Int Ed Engl 38:2873–2874Google Scholar
  10. Arend M, Westermann B, Risch N (1998) Angew Chem Int Ed Engl 37:1045Google Scholar
  11. Avemaria F, Vanderheiden S, Bräse S (2003) Tetrahedron 59:6785Google Scholar
  12. Babu G, Perumal PT (1998) Tetrahedron 54:1627Google Scholar
  13. Bagley MC, Brace C, Dale JW, Ohnesorge M, Phillips NG, Xiong X, Bower J (2002) J Chem Soc [Perkin 1]:1663Google Scholar
  14. Belattar A, Saxton JE (1992) J Chem Soc [Perkin 1]:679Google Scholar
  15. Bernardi L, Gothelf AS, Hazell RG, Jørgensen KA (2003) Catalytic asymmetric Mannich reactions of glycine derivatives with imines. A new approach to optically active alpha,beta-diamino acid derivatives. J Org Chem 68:2583–2591Google Scholar
  16. Birkinshaw TN, Tabor AB, Holmes AB, Raithby PR (1988) J Chem Soc Chem Commun 24:1599–1601Google Scholar
  17. Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103Google Scholar
  18. Bohlmann F, Rahtz D (1957) Chem Ber 90:2265Google Scholar
  19. Bolm C, Rantanen T, Schiffers I, Zani L (2005) Protonated chiral catalysts: versatile tools for asymmetric synthesis. Angew Chem Int Ed Engl 44:1758–1763Google Scholar
  20. Brown KS, Djerassi C (1964) J Am Chem Soc 86:2451Google Scholar
  21. Byrne JJ, Chavarot M, Chavant YP, Valleé Y (2000) Tetrahedron Lett 41:873Google Scholar
  22. Carpentier JF, Bette V (2002) Curr Organic Chem 6:913Google Scholar
  23. Chavarot M, Byrne JJ, Chavant YP, Valleé Y (2001) Tetrahedron Asymmetry 12:1147Google Scholar
  24. Chen XH, Xu XY, Liu H, Cun LF, Gong LZ (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128:14802–14803Google Scholar
  25. Cordova A (2004) The direct catalytic asymmetric mannich reaction. Acc Chem Res 37:102–112Google Scholar
  26. Corey EJ, Grogan MJ (1999) Enantioselective synthesis of alpha-amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org Lett 1:157–160Google Scholar
  27. Daly JW (1998) Thirty years of discovering arthropod alkaloids in amphibian skin. J Nat Prod 61:162–172Google Scholar
  28. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575Google Scholar
  29. Denmark SE (1991) In: Trost BM, Flemming I (eds) Comprehensive organic synthesis, vol 5. Pergamon, Oxford, p 51Google Scholar
  30. Diez E, Fernandez R, Martin-Zamora E, Pareja C, Prieto A, Lassaletta JM (1999) Tetrahedron Asymmetry 10:1145Google Scholar
  31. Diez E, Lopez AM, Pareja C, Martin E, Fernandez R, Lassaletta JM (1998) Tetrahedron Lett 39:7955Google Scholar
  32. Enders D, Diez E, Fernandez R, Martin-Zamora E, Munoz JM, Pappalardo RR, Lassaletta JM (1999) J Org Chem 64:6329Google Scholar
  33. Enders D, Schubert H (1984) Angew Chem Int Ed Engl 23:365Google Scholar
  34. Ferraris D, Young B, Cox C, Dudding T, Drury III WJ, Ryzhkov L, Taggi AE, Lectka T (2002) Catalytic, enantioselective alkylation of alpha-imino esters: the synthesis of nonnatural alpha-amino acid derivatives. J Am Chem Soc 124:67–77Google Scholar
  35. Ferraris D, Young B, Cox C, Drury III WJ, Dudding T, Lectka T (1998b) Diastereo- and enantioselective alkylation of alpha-imino esters with enol silanes catalyzed by (R)-Tol-BINAP-CuClO(4).(MeCN)(2). J Org Chem 63:6090–6091Google Scholar
  36. Ferraris D, Dudding T, Young B, Drury III WJ, Lectka T (1999) J Org Chem 64:2168Google Scholar
  37. Ferraris D, Young B, Dudding T, Lectka T (1998a) J Am Chem Soc 120:4548Google Scholar
  38. Frontier AJ, Collison C (2005) Tetrahedron 61:7577Google Scholar
  39. Fujieda H, Kanai M, Kambara T, Iida A, Tomioka K (1997) J Am Chem Soc 119:2060Google Scholar
  40. Fujii A, Hagiwara E, Sodeoka M (1999) J Am Chem Soc 121:5450Google Scholar
  41. Glorius F (2005) Asymmetric hydrogenation of aromatic compounds. Org Biomol Chem 3:4171–4175Google Scholar
  42. Glorius F, Spielkamp N, Holle S, Goddard R, Lehmann CW (2004) Efficient asymmetric hydrogenation of pyridines. Angew Chem Int Ed Engl 43:2850–2852Google Scholar
  43. Gröger H (2003) Chem Rev 103:2795Google Scholar
  44. Habermas KL, Denmark SE, Jones TK (1994) Org React 45:1–158Google Scholar
  45. Hagiwara E, Fujii A, Sodeoka M (1998) J Am Chem Soc 120:2474Google Scholar
  46. Hamashima Y, Sasamoto N, Hotta D, Somei H, Umebayashi N, Sodeoka M (2005) Catalytic asymmetric addition of beta-ketoesters to various imines by using chiral palladium complexes. Angew Chem Int Ed Engl 44:1525–1529Google Scholar
  47. Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H (2006) Design of Brønsted acid-assisted chiral Brønsted acid catalyst bearing a bis(triflyl)methyl group for a Mannich-type reaction. Org Lett 8:3175–3178Google Scholar
  48. Hassan NA, Bayer E, Jochims JC (1998) J Chem Soc Perkin 1:3747Google Scholar
  49. Hermitage S, Howard JAK, Jay D, Pritchard RG, Probert MR, Whiting A (2004) Mechanistic studies on the formal aza-Diels–Alder reactions of N-aryl imines: evidence for the non-concertedness under Lewis-acid catalysed conditions. Org Biomol Chem 2:2451–2460Google Scholar
  50. Hoffmann S, Nicoletti M, List B (2006) Catalytic asymmetric reductive amination of aldehydes via dynamic kinetic resolution. J Am Chem Soc 128:13074–13075Google Scholar
  51. Hofmann S, Seayad AM, List B (2005) Angew Chem Int Ed Engl 44:7424Google Scholar
  52. Holmes AB, Thompson J, Baxter AJG, Dixon J (1985) J Chem Soc Chem Commun 1:37Google Scholar
  53. Houghton PJ, Woldemariam TZ, Watanabe Y, Yates M (1999) Activity against Mycobacterium tuberculosis of alkaloid constituents of Angostura bark, Galipea officinalis. Planta Med 65:250–254Google Scholar
  54. Huang J, Corey EJ (2004) A new chiral catalyst for the enantioselective Strecker synthesis of alpha-amino acids. Org Lett 6:5027–5029Google Scholar
  55. Ilas J, Anderluh PS, Dolenc MS, Kikelj D (2005) Tetrahedron 61:7325Google Scholar
  56. Ishitani H, Komiyama S, Kobayashi S (1998) Angew Chem Int Ed Engl 37:3186Google Scholar
  57. Ishitani H, Ueno M, Kobayashi S (1997) J Am Chem Soc 119:7153Google Scholar
  58. Ishitani H, Ueno M, Kobayashi S (2000) J Am Chem Soc 122:8180Google Scholar
  59. Itoh J, Fuchibe K, Akiyama T (2006) Chiral Brønsted acid catalyzed enantioselective aza-Diels–Alder reaction of Brassard's diene with imines. Angew Chem Int Ed Engl 45:4796–4798Google Scholar
  60. Jacquemond-Collet I, Hannedouche S, Fabre N, Fouraste I, Moulis C (1999) Phytochemistry 51:1167Google Scholar
  61. Jiao Z, Feng X, Liu B, Chen F, Zhang G, Jiang Y (2003) Eur J Org Chem 2003:3818Google Scholar
  62. Job A, Janeck CF, Bettray W, Peters R, Enders D (2002) Tetrahedron 58:2253Google Scholar
  63. Josephsohn NS, Kuntz KW, Snapper ML, Hoveyda AH (2001) Mechanism of enantioselective Ti-catalyzed Strecker reaction: peptide-based metal complexes as bifunctional catalysts. J Am Chem Soc 123:11594–11599Google Scholar
  64. Juhl K, Gathergood N, Jørgensen KA (2001) Catalytic asymmetric direct Mannich reactions of carbonyl compounds with alpha-imino esters. Angew Chem Int Ed Engl 40:2995–2997Google Scholar
  65. Kadyrov R, Riermeier TH (2003) Highly enantioselective hydrogen-transfer reductive amination: catalytic asymmetric synthesis of primary amines. Angew Chem Int Ed Engl 42:5472–5474Google Scholar
  66. Kang Q, Zhao ZA, You SL (2007) Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid. J Am Chem Soc 129:1484–1485Google Scholar
  67. Kleemann A, Engel J, Kutscher B, Reichert D (eds) (2001) Pharmaceutical substances, 4th edn. Thieme, Stuttgart, New YorkGoogle Scholar
  68. Kleinmann EF (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 2. Pergamon, Oxford, p 893Google Scholar
  69. Knowles WS (2002) Angew Chem Int Ed Engl 41:1998Google Scholar
  70. Kobayashi S, Ishitani H (1999) Catalytic enantioselective addition to imines. Chem Rev 99:1069–1094Google Scholar
  71. Kobayashi S, Ishitani H (2000) Novel binuclear chiral zirconium catalysts used in enantioselective strecker reactions. Chirality 12:540–543Google Scholar
  72. Kobayashi S, Ishitani H, Nagayama S (1995) Synthesis 1995:1195Google Scholar
  73. Kobayashi S, Ishitani H, Ueno M (1998) J Am Chem Soc 120:431Google Scholar
  74. Kobayashi S, Kobayashi J, Ishitani H, Ueno M (2002) Catalytic enantioselective addition of propionate units to imines: an efficient synthesis of anti-alpha-methyl-beta-amino acid derivatives. Chem Eur J 8:4185–4190Google Scholar
  75. Krohn K, Kirst HA, Maag H (eds) (1993) Antibiotics and antiviral compounds. VCH, WeinheimGoogle Scholar
  76. Krow GR, Johnson CA, Guare JP, Kubrak D, Henz KJ, Shaw DA, Szczepanski SW, Carey JT (1982) J Org Chem 47:5239Google Scholar
  77. Krow GR, Szczepanski SW, Kim JY, Liu N, Sheikh A, Xiao Y, Yuan J (1999) J Org Chem 64:1254Google Scholar
  78. Krueger CA, Kuntz KW, Dzierba CD, Wirschun WG, Gleason JD, Snapper ML, Hoveyda AH (1999) J Am Chem Soc 121:4284Google Scholar
  79. Legault CY, Charette AB (2005) Catalytic asymmetric hydrogenation of N-iminopyridinium ylides: expedient approach to enantioenriched substituted piperidine derivatives. J Am Chem Soc 127:8966–8967Google Scholar
  80. Lei A, Chen M, He M, Zhang X (2006) Eur J Org Chem 2006:4343Google Scholar
  81. Liang G, Gradl SN, Trauner D (2003) Org Lett 5:5931Google Scholar
  82. Liang G, Trauner D (2004) Enantioselective Nazarov reactions through catalytic asymmetric proton transfer. J Am Chem Soc 126:9544–9545Google Scholar
  83. Liu B, Feng X, Chen F, Zhang G, Cui X, Jiang Y (2001) Synlett 2001:1551Google Scholar
  84. Liu H, Cun LF, Mi AQ, Jiang YZ, Gong LZ (2006) Enantioselective direct aza hetero-Diels–Alder reaction catalyzed by chiral Brønsted acids. Org Lett 8:6023–6026Google Scholar
  85. Lu SM, Han XW, G Zhou Y (2004) Adv Synth Catal 346:909Google Scholar
  86. Malkov AV, Mariani A, MacDougall KN, Koèvskỳ P (2004) Role of noncovalent interactions in the enantioselective reduction of aromatic ketimines with trichlorosilane. Org Lett 6:2253–2256Google Scholar
  87. Martin NJA, List B (2006) J Am Chem Soc 128:368Google Scholar
  88. Masumoto S, Usuda H, Suzuki M, Kanai M, Shibasaki M (2003) Catalytic enantioselective Strecker reaction of ketoimines. J Am Chem Soc 125:5634–5635Google Scholar
  89. Matsunaga S, Kumagai N, Harada S, Shibasaki M (2003) anti-Selective direct catalytic asymmetric Mannich-type reaction of hydroxyketone providing beta-amino alcohols. J Am Chem Soc 125:4712–4713Google Scholar
  90. Mayer S, List B (2006) Asymmetric counteranion-directed catalysis. Angew Chem Int Ed Engl 45:4193–4195Google Scholar
  91. Michael JP (2005) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 22:603–626Google Scholar
  92. Nakashima D, Yamamoto H (2006) Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its application to asymmetric Diels–Alder reaction. J Am Chem Soc 128:9626–9627Google Scholar
  93. Nishiyama H, Itoh K (2000) In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York, Chaps 1–2Google Scholar
  94. Noyori R (1996) Acta Chem Scand 50:380Google Scholar
  95. Noyori R (2002) Angew Chem Int Ed Engl 1:2008Google Scholar
  96. O'Hagan D (2000) Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 17:435–446Google Scholar
  97. Ohkuma T, Noyori R (2004) In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, suppl 1. Springer, Berlin Heidelberg New York, p 43Google Scholar
  98. Ohkuma T, Kitamura M, Noyori R (2000) In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York, Chap 1Google Scholar
  99. Pareja C, Martin-Zamora E, Fernandez R, Lassaletta JM (1999) Stereoselective synthesis of trifluoromethylated compounds: nucleophilic addition of formaldehyde N,N-dialkylhydrazones to trifluoromethyl ketones. J Org Chem 64:8846–8854Google Scholar
  100. Pellissier H (2005) Tetrahedron 61:6479Google Scholar
  101. Pihko PM (2004) Activation of carbonyl compounds by double hydrogen bonding: an emerging tool in asymmetric catalysis. Angew Chem Int Ed Engl 43:2062–2064Google Scholar
  102. Rakotoson JH, Fabre N, Jacquemond-Collet I, Hannedouche S, Fouraste I, Moulis C (1998) Alkaloids from Galipea officinalis. Planta Med 64:762–763Google Scholar
  103. Reetz MT, Li X (2006) Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites. Chem Commun May 28:2159–2160Google Scholar
  104. Riant O, Mostefai N, Courmarcel J (2004) Synthesis 2004:2943Google Scholar
  105. Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC (2005) Brønsted acid-catalyzed imine amidation. J Am Chem Soc 127:15696–15697Google Scholar
  106. Rueping M, Antonchick AP (2007) Organocatalytic enantioselective reduction of pyridines. Angew Chem Int Ed Engl 46:4562–4565Google Scholar
  107. Rueping M, Antonchick AP, Theissmann T (2006b) Synlett 2006:1071Google Scholar
  108. Rueping M, Antonchick AP, Theissmann T (2006c) A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew Chem Int Ed Engl 45:3683–3686Google Scholar
  109. Rueping M, Antonchick AP, Theissmann T (2006d) Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. Angew Chem Int Ed Engl 45:6751–6755Google Scholar
  110. Rueping M, Azap C (2006) Cooperative coexistence: effective interplay of two Brønsted acids in the asymmetric synthesis of isoquinuclidines. Angew Chem Int Ed Engl 45:7832–7835Google Scholar
  111. Rueping M, Azap C, Sugiono E, Theissmann T (2005a) Synlett 2005:2367Google Scholar
  112. Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M (2005b) Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Org Lett 7:3781–3783Google Scholar
  113. Rueping M, Ieawsuwan W, Antonchick AP, Nachtsheim BJ (2007c) Cooperative coexistence: effective interplay of two Brønsted acids in the asymmetric synthesis of isoquinuclidines. Angew Chem Int Ed Engl 46:2097–2100Google Scholar
  114. Rueping M, Sugiono E, Azap C, Theissmann T (2006a) Catalysts for fine chemical industry, vol 5. Wiley, Chichester, pp 162–176Google Scholar
  115. Rueping M, Sugiono E, Azap C (2006e) A highly enantioselective Brønsted acid catalyst for the Strecker reaction. Angew Chem Int Ed Engl 45:2617Google Scholar
  116. Rueping M, Sugiono E, Schoepke FR (2007b) Synlett 2007:144Google Scholar
  117. Rueping M, Sugiono E, Theissmann T, Kuenkel A, Köckritz A, Pews Davtyan A, Nemati N, Beller M (2007a) An enantioselective chiral Brønsted acid catalyzed imino-azaenamine reaction. Org Lett 9:1065–1068Google Scholar
  118. Satoh K, Inenaga M, Kanai K (1998) Tetrahedron Asymmetry 9:2657Google Scholar
  119. Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289–296Google Scholar
  120. Seayad J, Seayad AM, List B (2006) Catalytic asymmetric Pictet-Spengler reaction. J Am Chem Soc 128:1086–1087Google Scholar
  121. Shi M, M Xu Y (2001) Chem Commun 2001:1876Google Scholar
  122. Sigman MS, Jacobsen EN (1998a) J Am Chem Soc 120:5315Google Scholar
  123. Sigman MS, Jacobsen EN (1998b) J Am Chem Soc 120:4901Google Scholar
  124. Sigman MS, Vachal P, Jacobsen EN (2000) A general catalyst for the asymmetric Strecker reaction. Angew Chem Int Ed Engl 39:1279–1281Google Scholar
  125. Sklenicka HM, Hsung RP, McLaughlin MJ, Wie L, Gerasyuto AI, Brennessel WB (2002) Stereoselective formal [3+3] cycloaddition approach to cis-1-azadecalins and synthesis of (−)-4a,8a-diepi-pumiliotoxin C. evidence for the first highly stereoselective 6pi-electron electrocyclic ring closures of 1-azatrienes. J Am Chem Soc 124:10435–10442Google Scholar
  126. Spino C (2004) Recent developments in the catalytic asymmetric cyanation of ketimines. Angew Chem Int Ed Engl 43:1764–1766Google Scholar
  127. Steinhagen H, Corey EJ (1999) Angew Chem Int Ed Engl 38:1928Google Scholar
  128. Storer RI, Carrera DE, Ni Y, MacMillan DWC (2006) Enantioselective organocatalytic reductive amination. J Am Chem Soc 128:84–86Google Scholar
  129. Strecker A (1850) Ann Chem Pharm 75:27Google Scholar
  130. Sundberg RJ, Smith SQ (2002) The Iboga alkaloids. In: Cordell GA (ed) The alkaloids, vol 59. Academic Press, San Diego, p 281Google Scholar
  131. Sunden H, Ibrahem I, Eriksson L, Cordova A (2005) Direct catalytic enantioselective aza-Diels–Alder reactions. Angew Chem Int Ed Engl 44:4877–4880Google Scholar
  132. Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki M (2000) A catalytic asymmetric Strecker-type reaction: interesting reactivity difference between TMSCN and HCN. Angew Chem Int Ed Engl 39:1650–1652Google Scholar
  133. Tang W, Zhang X (2003) New chiral phosphorus ligands for enantioselective hydrogenation. Chem Rev 103:3029–3069Google Scholar
  134. Terada M, Machioka K, Sorimachi K (2006b) High substrate/catalyst organocatalysis by a chiral Brønsted acid for an enantioselective aza-ene-type reaction. Angew Chem Int Ed Engl 45:2254–2257Google Scholar
  135. Terada M, Sorimachi K (2007) Enantioselective friedel-crafts reaction of electron-rich alkenes catalyzed by chiral Brønsted acid. J Am Chem Soc 129:292–293Google Scholar
  136. Terada M, Sorimachi K, Uraguchi D (2006a) Synlett 2006:13Google Scholar
  137. Tius MA (2005) Eur J Org Chem 2005:2193Google Scholar
  138. Trost BM, Terrell LR (2003) A direct catalytic asymmetric mannich-type reaction to syn-amino alcohols. J Am Chem Soc 125:338–339Google Scholar
  139. Tsogoeva SB, Yalalov DA, Hateley MJ, Weckbecker C, Huthmacher K (2005) Eur J Org Chem 2005:4995Google Scholar
  140. Uraguchi D, Sorimachi K, Terada M (2004) Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan. J Am Chem Soc 126:11804–11805Google Scholar
  141. Uraguchi D, Terada M (2004) Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J Am Chem Soc 126:5356–5357Google Scholar
  142. Vachal P, Jacobsen EN (2000) Enantioselective catalytic addition of HCN to ketoimines. Catalytic synthesis of quaternary amino acids. Org Lett 2:867–870Google Scholar
  143. Vachal P, Jacobsen EN (2002) Structure-based analysis and optimization of a highly enantioselective catalyst for the strecker reaction. J Am Chem Soc 124:10012–10014Google Scholar
  144. Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. J Am Chem Soc 125:10536–10537Google Scholar
  145. Wenzel AG, Lalonde MP, Jacobsen EN (2003) Synlett 2003:1919Google Scholar
  146. Xu L, Lam KH, Ji J JWu, H Fan Q, H Lo W, Chan ASC (2005) Air-stable Ir-(P-Phos) complex for highly enantioselective hydrogenation of quinolines and their immobilization in poly(ethylene glycol) dimethyl ether (DMPEG). Chem Commun (Camb) 2005:1390–1392Google Scholar
  147. Yamasaki S, Iida T, Shibasaki M (1999a) Tetrahedron Lett 40:307Google Scholar
  148. Yamasaki S, Iida T, Shibasaki M (1999b) Tetrahedron 55:8857Google Scholar
  149. Yang PY, Zhou YG (2004) Tetrahedron Asymmetry 15:1145Google Scholar
  150. Yet L (2001) Recent developments in catalytic asymmetric Strecker-type reactions. Angew Chem Int Ed Engl 40:875–877Google Scholar
  151. Zhou YG, Yang PY, Han XW (2005) Synthesis and highly enantioselective hydrogenation of exocyclic enamides: (Z)-3-arylidene-4-acetyl-3,4-dihydro-2H-1,4-benzoxazines. J Org Chem 70:1679–1683Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Degussa Endowed ProfessorshipInstitute of Organic Chemistry and Chemical BiologyFrankfurt am MainGermany

Personalised recommendations