New Concepts for Organocatalysis

  • S. C. Pan
  • B. List
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/2)


Organocatalysis, catalysis with low-molecular weight catalysts in which a metal is not part of the catalytic principle or the reaction substrate, can be as efficient and selective as metal- or biocatalysis. Important discoveries in this area include novel Lewis base-catalyzed enantioselective processes and, more recently, simple Brønsted acid organocatalysts that rival the efficiency of traditional metal-based asymmetric Lewis acid-catalysts. Contributions to organocatalysis from our laboratories include several new and broadly useful concepts such as enamine catalysis and asymmetric counteranion-directed catalysis. Our laboratory has discovered the proline-catalyzed direct asymmetric intermolecular aldol reaction and introduced several other organocatalytic reactions.


Reductive Amination Lower Unoccupied Molecular Orbital Energy Aldol Reaction Ceric Ammonium Nitrate Asymmetric Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present and past co-workers in my laboratory, whose names are given in the list of references, are highly acknowledged for their hard work, skill and enthusiasm. I thank the National Institute of Health for funding my work at Scripps. Generous support by the Max-Planck-Society and by Novartis (Young Investigator Award to BL) is gratefully acknowledged. I also thank the DFG (Priority Program Organocatalysis SPP1179), Degussa, Wacker, Merck, Saltigo, Sanofi-Aventis and BASF for general support and donating chemicals. I also thank Professor Kendall. N. Houk and Professor Walter Thiel for fruitful collaborations.


  1. Agami C (1988) Mechanism of the proline-catalyzed enantioselective aldol reaction. Recent advances. Bull Soc Chim Fr 3:499–507Google Scholar
  2. Agami C, Meynier F, Puchot C, Guilhem J, Pascard C (1984) New insights into the mechanism of the proline-catalyzed asymmetric Robinson cyclization; structure of two intermediates. Asymmetric dehydration. Tetrahedron 40:1031–1038CrossRefGoogle Scholar
  3. Agami C, Puchot C (1986) Kinetic analysis of dual catalysis by proline in an asymmetric intramolecular aldol reaction. J Mol Catal 38:341–343CrossRefGoogle Scholar
  4. Agami C, Puchot C, Sevestre H (1986) Is the mechanism of the proline-catalyzed enantioselective aldol reaction related to biochemical processes? Tetrahedron Lett 27:1501–1504CrossRefGoogle Scholar
  5. Ahrendt KA, Borths CJ, MacMillan DWC (2000) New strategies for organic catalysis: The first highly enantioselective organocatalytic Diels–Alder reaction. J Am Chem Soc 122:4243–4244CrossRefGoogle Scholar
  6. Akiyama T (2004) Preparation of chiral Bronsted catalysts in asym. synthesis and asym. Mannich, aza-Diels–Alder reaction, hydrophosphorylation therewith. PCT Int Appl WO 200409675, 2004-11-11Google Scholar
  7. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew Chem Int Ed Engl 43:1566–1568CrossRefGoogle Scholar
  8. Akiyama T, Morita H, Itoh J, Fuchibe K (2005a) Chiral Brønsted acid catalyzed enantioselective hydrophosphonylation of imines: asymmetric synthesis of alpha-amino phosphonates. Org Lett 7:2583–2585CrossRefGoogle Scholar
  9. Akiyama T, Saitoh Y, Morita H, Fuchibe K (2005b) Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid derived from TADDOL. Adv Synth Catal 347:1523–1526CrossRefGoogle Scholar
  10. Alexakis A, Andrey O (2002) Diamine-catalyzed asymmetric Michael additions of aldehydes and ketones to nitrostyrene. Org Lett 4:3611–3614CrossRefGoogle Scholar
  11. Allemann C, Gordillo R, Clemente FR, Cheong PH, Houk KN (2004) Theory of asymmetric organocatalysis of Aldol and related reactions: rationalizations and predictions. Acc Chem Res 37:558–569CrossRefGoogle Scholar
  12. Austin JF, MacMillan DWC (2002) Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J Am Chem Soc 124:1172–1173CrossRefGoogle Scholar
  13. Baba N, Makino T, Oda J, Inouye Y (1980) Asymmetric reduction of alpha, beta-unsaturated iminium salts with 1,4-dehydronicotinamide sugar pyranosides. Can J Chem 58:387–392 CrossRefGoogle Scholar
  14. Bahmanyar S, Houk KN (2001a) The origin of stereoselectivity in proline-catalyzedintramolecularaldolreactions.JAmChemSoc123:12911–12912CrossRefGoogle Scholar
  15. Bahmanyar S, Houk KN (2001b) Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity. J Am Chem Soc 123:11273–11283CrossRefGoogle Scholar
  16. Bahmanyar S, Houk KN, Martin HJ, List B (2003) Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J Am Chem Soc 125:2475–2479CrossRefGoogle Scholar
  17. Barbas CF 3rd, Heine A, Zhong G, Hoffmann T, Gramatikova S, Bjoernstedt R, List B, Anderson J, Stura EA, Wilson I, Lerner RA (1997) Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278:2085–2092CrossRefGoogle Scholar
  18. Beeson TD, MacMillan DWC (2005) Enantioselective organocatalytic alpha-fluorination of aldehydes. J Am Chem Soc 127:8826–8828CrossRefGoogle Scholar
  19. Berkessel A, Gröger H (2005) Asymmetric organocatalysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  20. Bertelsen S, Halland N, Bachmann S, Marigo M, Braunton A, Jørgensen KA (2005) Organocatalytic asymmetric alpha-bromination of aldehydes and ketones. Chem Commun (Camb) 14:4821–4823CrossRefGoogle Scholar
  21. Betancort JM, Barbas CF 3rd (2001) Catalytic direct asymmetric Michael reactions: taming naked aldehyde donors. Org Lett 3:3737–3740CrossRefGoogle Scholar
  22. Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA (2002b) Direct organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acids. Angew Chem Int Ed Engl 41:1790–1793CrossRefGoogle Scholar
  23. Bøgevig A, Kumaragurubaran N, Jørgensen KA (2002a) Direct catalytic asymmetric aldol reactions of aldehydes. Chem Commun (Camb) Mar 21:620–621CrossRefGoogle Scholar
  24. Bøgevig A, Poulsen TB, Zhuang W, Jørgensen KA (2003) Formation of optically active functionalized β-hydroxy nitrones using a proline catalyzed aldol reaction of aldehydes with carbonyl compounds and hydroxylamines. Synlett 2003:1915–1918Google Scholar
  25. Bøgevig A, Sundéen H, Córdova A (2004) Direct catalytic enantioselective alpha-aminoxylation of ketones: a stereoselective synthesis of alpha-hydroxy and alpha,alpha′-dihydroxy ketones. Angew Chem Int Ed Engl 43:1109–1112CrossRefGoogle Scholar
  26. Brochu MP, Brown SP, MacMillan DWC (2004) Direct and enantioselective organocatalytic alpha-chlorination of aldehydes. J Am Chem Soc 126:4108–4109CrossRefGoogle Scholar
  27. Brown SP, Brochu MP, Sinz CJ, MacMillan DWC (2003a) The direct and enantioselective organocatalytic alpha-oxidation of aldehydes. J Am Chem Soc 125:10808–10809CrossRefGoogle Scholar
  28. Brown SP, Goodwin NC, MacMillan DWC (2003b) The first enantioselective organocatalytic Mukaiyama-Michael reaction: a direct method for the synthesis of enantioenriched gamma-butenolide architecture. J Am Chem Soc 125:1192–1194CrossRefGoogle Scholar
  29. Caddick S, Jenkins K (1996) Dynamic resolutions in asymmetric synthesis. Chem Soc Rev 25:447–456CrossRefGoogle Scholar
  30. Carter C, Fletcher S, Nelson A (2003) Towards phase-transfer catalysts with a chiral anion: inducing asymmetry in the reactions of cations. Tetrahedron Asymmetry 14:1995–2004CrossRefGoogle Scholar
  31. Cheong PH, Houk KN (2004) Origins of selectivities in proline-catalyzed alpha-aminoxylations. J Am Chem Soc 126:13912–13913CrossRefGoogle Scholar
  32. Chi Y, Gellman SH (2005) Diphenylprolinol methyl ether: a highly enantioselective catalyst for Michael addition of aldehydes to simple enones. Org Lett 7:4253–4256CrossRefGoogle Scholar
  33. Chowdari NS, Ramachary DB, Córdova A, Barbas CF 3rd (2002) Proline-catalyzed asymmetric assembly reactions: enzyme-like assembly of carbohydrates and polyketides from three aldehyde substrates. Tetrahedron Lett 43:9591–9595CrossRefGoogle Scholar
  34. Clemente FR, Houk KN (2004) Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew Chem Int Ed Engl 43:5766–5768CrossRefGoogle Scholar
  35. Córdova A (2003) One-pot organocatalytic direct asymmetric synthesis of γ-amino alcohol derivatives. Synlett 2004:1651–1654CrossRefGoogle Scholar
  36. Córdova A, Notz W, Barbas CF 3rd (2002a) Proline-catalyzed one-step asymmetricsynthesisof5-hydroxy-(2E)-hexenalfromacetaldehyde.JOrgChem 67:301–303CrossRefGoogle Scholar
  37. Córdova A, Notz W, Barbas CF 3rd (2002b) Direct organocatalytic aldol reactions in buffered aqueous media. Chem Commun (Camb) Dec 21:3024–3025Google Scholar
  38. Córdova A, Watanabe S, Tanaka F, Notz W, Barbas CF 3rd (2002c) A highly enantioselective route to either enantiomer of both alpha- and beta-amino acid derivatives. J Am Chem Soc 124:1866–1867CrossRefGoogle Scholar
  39. Dang TP, Aviron-Violet P, Colleuille Y, Varagnat J (1982) Catalysis of the homogeneous-phase hydrogenation of α,β -unsaturated aldehydes. Application to the asymmetric synthesis of citronellal. J Mol Catal 16:51–59CrossRefGoogle Scholar
  40. Dorta R, Shimon L, Milstein D (2004) Rhodium complexes with chiral counterions: achiral catalysts in chiral matrices. J Organomet Chem 689:751–758CrossRefGoogle Scholar
  41. Eder U, Sauer G, Wiechert R (1971) New type of asymmetric cyclization to optically active steroid CD partial structures. Angew Chem Int Ed Engl 10:496–497CrossRefGoogle Scholar
  42. Enders D, Grondal C, Vrettou M, Raabe G (2005) Asymmetric synthesis of selectively protected amino sugars and derivatives by a direct organocatalytic Mannich reaction. Angew Chem Int Ed Engl 44:4079–4083CrossRefGoogle Scholar
  43. Enders D, Grondal C, Vrettou M (2006) Efficient entry to amino sugars and derivatives via asymmetric organocatalytic Mannich reactions. Synthesis 2006:3597–3604CrossRefGoogle Scholar
  44. Enders D, Hüttl MRM (2005) Direct organocatalytic α-fluorination of aldehydes and ketones. Synlett 2005:991–993CrossRefGoogle Scholar
  45. Enders D, Seki A (2002) Proline-catalyzed enantioselective Michael additions of ketones to nitrostyrene. Synlett 2002:26–28CrossRefGoogle Scholar
  46. Enders D, Vrettou M (2006) Asymmetric synthesis of (+)-polyoxamic acid via an efficient organocatalytic Mannich reaction as the key step. Synthesis 13:2155–2158CrossRefGoogle Scholar
  47. Hagen TG, Narayanan K, Names J, Cook JM (1989) DDQ oxidations in the indole area. Synthesis of 4-alkoxy-beta-carbolines including the natural products crenatine and 1-methoxycanthin-6-one. J Org Chem 54:2170–2178CrossRefGoogle Scholar
  48. Hajos ZG, Parrish DR (1974) Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem 39:1615–1621CrossRefGoogle Scholar
  49. Halland N, Braunton A, Bachmann S, Marigo M, Jørgensen KA (2004) Direct organocatalytic asymmetric alpha-chlorination of aldehydes. J Am Chem Soc 126:4790–4791CrossRefGoogle Scholar
  50. Halland N, Hazell RG, Jørgensen KA (2002) Organocatalytic asymmetric conjugate addition of nitroalkanes to alpha,beta-unsaturated enones using novel imidazoline catalysts. J Org Chem 67:8331–8338CrossRefGoogle Scholar
  51. Hashimot S, Komeshima N, Yamada S, Koga K (1977) Asymmetric Michael reaction via chiral α ,β-unsaturated aldimines. Tetrahedron Lett 18:2907–2908CrossRefGoogle Scholar
  52. Hayashi Y, Tsuboi W, Ashimine I, Urushima T, Shoji M, Sakai K (2003b) The direct and enantioselective, one-pot, three-component, cross-mannich reaction of aldehydes. Angew Chem Int Ed Engl 42:3677–3680CrossRefGoogle Scholar
  53. Hayashi Y, Tsuboi W, Shoji M, Suzuki N (2003a) Application of high pressure induced by water-freezing to the direct catalytic asymmetric three-component List-Barbas-Mannich reaction. J Am Chem Soc 125:11208–11209CrossRefGoogle Scholar
  54. Hayashi Y, Yamaguchi J, Hibino K, Shoji M (2003c) Direct proline catalyzed asymmetric α-aminooxylation of aldehydes. Tetrahedron Lett 44:8293–8296CrossRefGoogle Scholar
  55. Hayashi Y, Yamaguchi J, Sumiya T, Shoji M (2004) Direct proline-catalyzed asymmetric alpha-aminoxylation of ketones. Angew Chem Int Ed Engl 43:1112–1115CrossRefGoogle Scholar
  56. Hechavarria Fonseca MT, List B (2004) Catalytic asymmetric intramolecular Michael reaction of aldehydes. Angew Chem Int Ed Engl 43:3958–3960CrossRefGoogle Scholar
  57. Hoang L, Bahmanyar S, Houk KN, List B (2003) Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. J Am Chem Soc 125:16–17CrossRefGoogle Scholar
  58. Hoffmann S, Nicoletti M, List B (2006) Catalytic asymmetric reductive amination of aldehydes via dynamic kinetic resolution. J Am Chem Soc 128:13074–13075CrossRefGoogle Scholar
  59. Hoffmann S, Seayad AM, List B (2005) A powerful Brønsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. Angew Chem Int Ed Engl 44:7424–7427CrossRefGoogle Scholar
  60. HoukKN,ListB(2004)Guesteditorial:asymmetricorganocatalysis.AccChem Res 37:487CrossRefGoogle Scholar
  61. Huerta FF, Minidis ABE, Bäckvall JE (2001) Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem Soc Rev 30:321–331CrossRefGoogle Scholar
  62. Ibrahem I, Casas J, Córdova A (2004) Direct catalytic enantioselective alpha-aminomethylation of ketones. Angew Chem Int Ed Engl 43:6528–6531CrossRefGoogle Scholar
  63. Ishihara K, Nakano K (2005) Design of an organocatalyst for the enantioselective Diels–Alder reaction with alpha-acyloxyacroleins. J Am Chem Soc 127:10504–10505CrossRefGoogle Scholar
  64. Itoh T, Nagata K, Miyazaki M, Ishikawa H, Kurihara A, Ohsawa A (2004) A selective reductive amination of aldehydes by the use of Hantzsch dihydropyridines as reductant. Tetrahedron 60:6649–6655CrossRefGoogle Scholar
  65. Jen WS, Wiener JJM, MacMillan DWC (2000) New strategies for organic catalysis: The first enantioselective organocatalytic 1,3-dipolar cycloaddition. J Am Chem Soc 122:9874–9875CrossRefGoogle Scholar
  66. Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623CrossRefGoogle Scholar
  67. Knowles WS (2002) Asymmetric hydrogenations (Nobel lecture). Angew Chem Int Ed Engl 41:1998–2007CrossRefGoogle Scholar
  68. KortvelyessyG(1985)Preparationofderivativesofcitronellal.ActaChimHung 119:347–354Google Scholar
  69. Kula MR, Wandrey C (1988) Continuous enzymic transformation in an enzyme-membrane reactor with simultaneous NADH regeneration. Methods Enzymol 136:9–21CrossRefGoogle Scholar
  70. Kumaragurubaran N, Juhl K, Zhuang W, Bøgevig A, Jørgensen KA (2002) Direct L-proline-catalyzed asymmetric alpha-amination of ketones. J Am Chem Soc 124:6254–6255CrossRefGoogle Scholar
  71. Kunz RK, MacMillan DWC (2005) Enantioselective organocatalytic cyclopropanations. The identification of a new class of iminium catalyst based upon directed electrostatic activation. J Am Chem Soc 127:3240–3241CrossRefGoogle Scholar
  72. Lacour J, Hebbe-Viton V (2003) Recent developments in chiral anion mediated asymmetric chemistry. Chem Soc Rev 32:373–382CrossRefGoogle Scholar
  73. Li X, List B (2007) Catalytic asymmetric hydrogenation of aldehydes. Chem Commun 17:1739–1741CrossRefGoogle Scholar
  74. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122:9336–9337CrossRefGoogle Scholar
  75. List B (2001) Asymmetric aminocatalysis. Synlett 2001:1675–1686CrossRefGoogle Scholar
  76. List B (2002a) Direct catalytic asymmetric alpha-amination of aldehydes. J Am Chem Soc 124:5656–5657CrossRefGoogle Scholar
  77. List B (2002b) Proline-catalyzed asymmetric reactions. Tetrahedron 58:5573–5590CrossRefGoogle Scholar
  78. List B (2004) Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanion equivalents. Acc Chem Res 37:548–557CrossRefGoogle Scholar
  79. List B, Hoang L, Martin HJ (2004) New mechanistic studies on the proline-catalyzed aldol reaction. Proc Natl Acad Sci U S A 101:5839–5842CrossRefGoogle Scholar
  80. List B, Lerner RA, Barbas CF 3rd (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396CrossRefGoogle Scholar
  81. List B, Pojarliev P, Martin HJ (2001) Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins. Org Lett 3:2423–2425CrossRefGoogle Scholar
  82. List B, Pojarliev P, Biller WT, Martin HJ (2002) The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols. J Am Chem Soc 124:827–833CrossRefGoogle Scholar
  83. List B, Yang JW (2006) Chemistry. The organic approach to asymmetric catalysis. Science 313:1584–1586CrossRefGoogle Scholar
  84. Llewellyn DB, Arndtsen BA (2005) Synthesis of a library of chiral α-amino acid-based borate counteranions and their application to copper catalyzed olefin cyclopropanation. Tetrahedron Asymmetry 16:1789–1799CrossRefGoogle Scholar
  85. Makino T, Baba N, Oda J, Inouye Y (1977) Asymmetric reduction of alpha, beta-unsaturated iminuum salt with N-glucopyranosyl-1,4-dihydronicotinamides. Chem Ind 1977:277–278Google Scholar
  86. Marigo M, Fielenbach D, Braunton A, Kjaersgaard A, Jørgensen KA (2005c) Enantioselective formation of stereogenic carbon-fluorine centers by a simple catalytic method. Angew Chem Int Ed Engl 44:3703–3706CrossRefGoogle Scholar
  87. Marigo M, Franzen J, Poulsen TB, Zhuang W, Jørgensen KA (2005b) Asymmetric organocatalytic epoxidation of alpha,beta-unsaturated aldehydes with hydrogen peroxide. J Am Chem Soc 127:6964–6965CrossRefGoogle Scholar
  88. Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA (2005a) Enantioselective organocatalyzed alpha sulfenylation of aldehydes. Angew Chem Int Ed Engl 44:794–797CrossRefGoogle Scholar
  89. Martin NJ, List B (2006) Highly enantioselective transfer hydrogenation of alpha,beta-unsaturated ketones. J Am Chem Soc 128:13368–13369CrossRefGoogle Scholar
  90. Mayer S, List B (2006) Asymmetric counteranion-directed catalysis. Angew Chem Int Ed Engl 45:4193–4195CrossRefGoogle Scholar
  91. Nicolaou KC, Sorensen EJ (1996) Classics in total synthesis. Wiley-VCH, Weinheim, p 344Google Scholar
  92. Nishiyama H, Itoh K (2000) Asymmetric hydrosilylation and related reactions. In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York, p 111–144Google Scholar
  93. Northrup AB, MacMillan DWC (2002a) The first direct and enantioselective cross-aldol reaction of aldehydes. J Am Chem Soc 124:6798–6799CrossRefGoogle Scholar
  94. Northrup AB, MacMillan DWC (2002b) First general enantioselective catalytic Diels–Alder reaction with simple alpha,beta-unsaturated ketones. J Am Chem Soc 124:2458–2460CrossRefGoogle Scholar
  95. Notz W, List B (2000) Catalytic asymmetric synthesis of anti-1,2-diols. J Am Chem Soc 122:7386–7387CrossRefGoogle Scholar
  96. Notz W, Tanaka F, Watanabe S, Chaudari NS, Turner JM, Thayumanavan R, Barbas CF 3rd (2003) The direct organocatalytic asymmetric mannich reaction: unmodified aldehydes as nucleophiles. J Org Chem 68:9624–9634CrossRefGoogle Scholar
  97. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed Engl 41:2008–2022CrossRefGoogle Scholar
  98. Noyori R, Tokunaga M, Kitamura M (1995) Stereoselective organic synthesis via dynamic kinetic resolution. Bull Chem Soc Jpn 68:36–55CrossRefGoogle Scholar
  99. Ohkuma T, Kitamura M, Noyori R (2000) Asymmetric hydrogenation. In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York, p 1–110Google Scholar
  100. Ohkuma T, Noyori R (2004) Hydrogenation of imino groups. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, suppl 1. Springer, New York, p 43Google Scholar
  101. Ouellet SG, Tuttle JB, MacMillan DWC (2005) Enantioselective organocatalytic hydride reduction. J Am Chem Soc 127:32–33CrossRefGoogle Scholar
  102. Paras NA, MacMillan DWC (2001) New strategies in organic catalysis: the first enantioselective organocatalytic Friedel-Crafts alkylation. J Am Chem Soc 123:4370–4371CrossRefGoogle Scholar
  103. Paras NA, MacMillan DWC (2002) The enantioselective organocatalytic 1,4-addition of electron-rich benzenes to alpha,beta-unsaturated aldehydes. J Am Chem Soc 124:7894–7895CrossRefGoogle Scholar
  104. Peelen TJ, Chi Y, Gellman SH (2005) Enantioselective organocatalytic Michael additions of aldehydes to enones with imidazolidinones: cocatalyst effects and evidence for an enamine intermediate. J Am Chem Soc 127:11598–11599CrossRefGoogle Scholar
  105. Perllissier H (2003) Dynamic kinetic resolution. Tetrahedron 59:8291–8327CrossRefGoogle Scholar
  106. Pictet A, Spengler T (1911) Formation of isoquinoline derivatives by the action of methylal on phenylethylamine, phenylalanine and tyrosine. Ber Dtsch Chem Ges 44:2030–2036CrossRefGoogle Scholar
  107. Pidathala C, Hoang L, Vignola N, List B (2003) Direct catalytic asymmetric enolexo aldolizations. Angew Chem Int Ed Engl 42:2785–2788CrossRefGoogle Scholar
  108. Puchot C, Samuel O, Dunach E, Zhao S, Agami C, Kagan HB (1986) Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions. J Am Chem Soc 108:2353–2357CrossRefGoogle Scholar
  109. Rhone-Poulenc Industries (1979) Optical active citronellal. (Rhone-Poulenc Industries, France). Patent JP 78-80630, 1979-02-03Google Scholar
  110. Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M (2005) Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Org Lett 7:3781–3783CrossRefGoogle Scholar
  111. Sakakura A, Suzuki K, Nakano K, Ishihara K (2006) Chiral 1,1′-binaphthyl-2,2′-diammonium salt catalysts for the enantioselective Diels–Alder reaction with α-acyloxyacroleins. Org Lett 8:2229–2232CrossRefGoogle Scholar
  112. Sanwal BD, Zink MW (1961) L-Leucine dehydrogenase of Bacillus cereus. Arch Biochem Biophys 94:430–435CrossRefGoogle Scholar
  113. Seayad J, List B (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719–724CrossRefGoogle Scholar
  114. Seayad J, Seayad AM, List B (2006) Catalytic asymmetric Pictet-Spengler reaction. J Am Chem Soc 128:1086–1087CrossRefGoogle Scholar
  115. Sekiguchi Y, Sasaoka A, Shimomoto A, Fujioka S, Kotsuki H (2003) High-pressure-promoted asymmetric aldol reactions of ketones with aldehydes catalyzed by L-proline. Synlett 2003:1655–1658Google Scholar
  116. Stecher H, Faber K (1997) Biocatalytic deracemization techniques: dynamic resolutions and stereoinversions. Synthesis 1997:1–16CrossRefGoogle Scholar
  117. Steiner DD, Mase N, Barbas III CF (2005) Direct asymmetric alpha-fluorination of aldehydes. Angew Chem Int Ed Engl 44:3706–3719CrossRefGoogle Scholar
  118. Storer RI, Carrera DE, Ni Y, MacMillan DWC (2006) Enantioselective organocatalytic reductive amination. J Am Chem Soc 128:84–86CrossRefGoogle Scholar
  119. Taratov VI, Börner A (2005) Approaching highly enantioselective reductive amination. Synlett 2005:203–211CrossRefGoogle Scholar
  120. Tatsui G (1928) Synthesis of carboline derivatives. J Pharm Soc Jpn 48:453–459Google Scholar
  121. Taylor MS, Jacobsen EN (2004) Highly enantioselective catalytic acyl-pictet-spengler reactions. J Am Chem Soc 126:10558–10559CrossRefGoogle Scholar
  122. Terada M, Uraguchi D, Sorimachi K, Shimizu H (2005) Process for production of optically active amines by stereoselective nucleophilic addition reaction of imines with C nucleophiles using chiral phosphoric acid derivative. PCT Int Appl WO 2005070875 2005-08-04Google Scholar
  123. Tokuda O, Kano T, G Gao W, Ikemoto T, Maruoka K (2005) A practical synthesis of (S)-2-cyclohexyl-2-phenylglycolic acid via organocatalytic asymmetric construction of a tetrasubstituted carbon center. Org Lett 7:5103–5105CrossRefGoogle Scholar
  124. Tuttle JB, Ouellet SG, MacMillan DWC (2006) Organocatalytic transfer hydrogenation of cyclic enones. J Am Chem Soc 128:12662–12663CrossRefGoogle Scholar
  125. Uraguchi D, Sorimachi K, Terada M (2004) Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan. J Am Chem Soc 126:11804–11805CrossRefGoogle Scholar
  126. Uraguchi D, Sorimachi K, Terada M (2005) Organocatalytic asymmetric direct alkylation of alpha-diazoester via C-H bond cleavage. J Am Chem Soc 127:9360–9361CrossRefGoogle Scholar
  127. Uraguchi D, Terada M (2004) Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J Am Chem Soc 126:5356–5357CrossRefGoogle Scholar
  128. Vignola N, List B (2004) Catalytic asymmetric intramolecular alpha-alkylation of aldehydes. J Am Chem Soc 126:450–451CrossRefGoogle Scholar
  129. Wang W, Wang J, Li H (2005) Direct, highly enantioselective pyrrolidine sulfonamide catalyzed Michael addition of aldehydes to nitrostyrenes. Angew Chem Int Ed Engl 44:1369–1371CrossRefGoogle Scholar
  130. Ward RS (1995) Dynamic kinetic resolution. Tetrahedron Asymmetry 6:1475–1490CrossRefGoogle Scholar
  131. Wilson RM, Jen WS, MacMillan DWC (2005) Enantioselective organocatalytic intramolecular Diels–Alder reactions. The asymmetric synthesis of solanapyrone D. J Am Chem Soc 127:11616–11617CrossRefGoogle Scholar
  132. Xie JH, Zhou ZT, Kong WL, Zhou QL (2007) Ru-catalyzed asymmetric hydrogenation of racemic aldehydes via dynamic kinetic resolution: efficient synthesis of optically active primary alcohols. J Am Chem Soc 129:1868–1869CrossRefGoogle Scholar
  133. Yamada YM, Yoshikawa N, Sasai H, Shibasaki M (1997) Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones. Angew Chem Int Ed Engl 36:1871–1873CrossRefGoogle Scholar
  134. Yamamoto H, Momiyama N (2005) Rich chemistry of nitroso compounds. Chem Commun (Camb) Jul 28:3514–3525CrossRefGoogle Scholar
  135. Yang JW, Hechavarria Fonseca MT, List B (2004) A metal-free transfer hydrogenation: organocatalytic conjugate reduction of alpha,beta-unsaturated aldehydes. Angew Chem Int Ed Engl 43:6660–6662CrossRefGoogle Scholar
  136. Yang JW, Hechavarria Fonseca MT, Vignola N, List B (2005) Metal-free, organocatalytic asymmetric transfer hydrogenation of alpha,beta-unsaturated aldehydes. Angew Chem Int Ed Engl 44:108–110CrossRefGoogle Scholar
  137. Yang JW, Stadler M, List B (2007a) Proline-catalyzed mannich reaction of aldehydes with N-Boc-imines. Angew Chem Int Ed Engl 46:609–611CrossRefGoogle Scholar
  138. Yang JW, Stadler M, List B (2007b) Practical Proline-catalyzed asymmetric Mannich reaction of aldehydes with N-Boc-imines. Nat Protoc 2:1937–1942CrossRefGoogle Scholar
  139. Zhong G (2003) A facile and rapid route to highly enantiopure 1,2-diols by novel catalytic asymmetric alpha-aminoxylation of aldehydes. Angew Chem Int Ed Engl 42:4247–4250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations