Skip to main content

Organocatalysis by Hydrogen Bonding Networks

  • Conference paper
  • First Online:

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/2))

Abstract

In biological systems, hydrogen bonding is used extensively for molecular recognition, substrate binding, orientation and activation. In organocatalysis, multiple hydrogen bonding by man-made catalysts can effect remarkable accelerations and selectivities as well. The lecture presents four examples of non-enzymatic (but in some cases enzyme-like!) catalysis effected by hydrogen bonding networks: epoxidation of olefins and Baeyer–Villiger oxidation of ketones with H2O2 in fluorinated alcohol solvents; peptide-catalyzed asymmetric epoxidation of enones by H2O2; dynamic kinetic resolution of azlactones, affording enantiomerically pure α-amino acids; and kinetic resolution of oxazinones, affording enantiomerically pure β-amino acids. All four types of transformations are of preparative value, and their mechanisms are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berkessel A, Adrio JA (2004) Kinetic studies of olefin epoxidation with hydrogen peroxide in 1,1,1,3,3,3-hexafluoro-2-propanol reveal a crucial catalytic role for solvent clusters. Adv Synth Catal 346:275–280

    Article  CAS  Google Scholar 

  • Berkessel A, Adrio JA (2006) Dramatic acceleration of olefin epoxidation in fluorinated alcohols: activation of hydrogen peroxide by multiple H-bond networks. J Am Chem Soc 128:13412–13420

    Article  CAS  Google Scholar 

  • Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM (2006a) Unveiling the “booster effect” of fluorinated alcohol solvents: aggregation-induced conformational changes, and cooperatively enhanced H-bonding. J Am Chem Soc 128:8421–8426

    Article  CAS  Google Scholar 

  • Berkessel A, Andreae MRM (2001) Efficient catalytic methods for the Baeyer-Villiger oxidation and epoxidation with hydrogen peroxide. Tetrahedron Lett 42:2293–2295

    Article  CAS  Google Scholar 

  • Berkessel A, Andreae MRM, Schmickler H, Lex J (2002) Baeyer–Villiger oxidations with hydrogen peroxide in fluorinated alcohols: lactone formation by a nonclassical mechanism. Angew Chem Int Ed 41:4481–4484

    Article  CAS  Google Scholar 

  • Berkessel A, Cleemann F, Mukherjee S (2005a) Kinetic resolution of oxazinones: an organocatalytic approach to enantiomerically pure beta-amino acids. Angew Chem Int Ed 44:7466–7469

    Article  CAS  Google Scholar 

  • Berkessel A, Cleemann F, Mukherjee S, Müller TN, Lex J (2005b) Highly efficient dynamic kinetic resolution of azlactones by urea-based bifunctional organocatalysts. Angew Chem Int Ed 44:807–811

    Article  CAS  Google Scholar 

  • Berkessel A, Gasch N, Glaubitz K, Koch C (2001) Highly enantioselective enone epoxidation catalyzed by short solid phase-bound peptides. Org Lett 3:3839–3842

    Article  CAS  Google Scholar 

  • Berkessel A, Gröger H (2005) Asymmetric organocatalysis—from biomimetic concepts to applications in asymmetric synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Berkessel A, Koch B, Toniolo C, Rainaldi M, Broxterman QB, Kaptein B (2006b) Asymmetric enone epoxidation by short solid-phase bound peptides: further evidence for catalyst helicity and catalytic activity of individual peptide strands. Biopolymers: Pept Sci 84:90–96

    Article  CAS  Google Scholar 

  • Berkessel A, Mukherjee S, Cleemann F, Müller TN, Lex J (2005c) Second-generation organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones. Chem Commun 2005:1898–1900

    Article  Google Scholar 

  • Berkessel A, Mukherjee S, Müller TN, Cleemann F, Roland K, Brandenburg M, Neudörfl JM (2006c) Structural optimization of thiourea-based bifunctional organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones. Org Biomol Chem 4:4319–4330

    Article  CAS  Google Scholar 

  • Blackmond DG, Mathew SP, Gunathilagan S, Roberts SM (2005) Mechanistic insights from reaction progress kinetic analysis of the polypeptide-catalyzed epoxidation of chalcone. Org Lett 7:4847–4850

    Article  Google Scholar 

  • Jacobsen EN, Taylor MS (2006) Asymmetric catalysis by chiral hydrogen bond donors. Angew Chem Int Ed 45:1520–1543

    Article  Google Scholar 

  • Juliá S, Guixer J, Masana J, Rocas J, Colonna S, Annunziata R, Molinari H (1982) Synthetic enzymes. Part 2. Catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system. J Chem Soc Perkin Trans 1:1317–1324

    Article  Google Scholar 

  • Juliá S, Masana J, Vega JC (1980) Synthetic Enzymes. Highly stereoselective epoxidation of chalcone in a triphasic toluene–water-poly[(S)-alanine] system. Angew Chem Int Ed Engl 19:929–931

    Article  Google Scholar 

  • Kelly DR, Roberts SM (2004) The mechanism of the polyleucine catalyzed asymmetric epoxidation. Chem Commun 2004:2018–2020

    Google Scholar 

  • Langenbeck W (1949) Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten (Organic Catalysts and their Relation to the Enzymes) 2nd ed. Springer, Berlin

    Google Scholar 

  • List B, Seayad J (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719–724

    Article  Google Scholar 

  • Milner-White EJ, Watson JD (2002a) A novel main-chain anion-binding site in proteins: the nest. A particular combination of Φ, Ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315:171–182

    Article  Google Scholar 

  • Milner-White EJ, Watson JD (2002b) The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurence in cation and anion-binding regions of proteins. J Mol Biol 315:183–191

    Article  Google Scholar 

  • Neumann R, Neimann K (2000) Electrophilic activation of hydrogen peroxide: selective oxidation reactions in perfluorinated alcohol solvents. Org Lett 2:2861–2863

    Article  Google Scholar 

  • Neumann R, Shaik S, de Visser SP, Kaneti J (2003) Fluorinated alcohols enable olefin epoxidationby H2O2: template catalysis. J Org Chem 68:2903–2912

    Article  Google Scholar 

  • Roberts SM, Bentley PA, Kroutil W, Littlechild JA (1997) Preparation of polyamino acid catalysts for use in Juliá asymmetric epoxidation. Chirality 9:198–202

    Article  Google Scholar 

  • Sheldon RA, van Vliet MCA, Arends IWCE (2001) Fluorinated alcohols: effective solvents for uncatalysed epoxidations with aqueous hydrogen peroxide. Synlett 2001:248–250

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by the EU (Research Training Networks ‘The Discovery of New Molecular Catalysts through Combinatorial Chemistry: Activity and Selectivity from Diversity’, COMBICAT, RTN-CT-2000–00014 and ‘(R)Evolutionary Catalysis’, REVCAT, MRTN-CT-2006–038566), the Deutsche Forschungsgemeinschaft (Priority Program ‘Organocatalysis’, SPP 1179), the Fonds der Chemischen Industrie, and by the BASF AG, Ludwigshafen. Generous gifts of amino acids by the Degussa AG, Hanau, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Berkessel .

Editor information

M.T. Reetz B. List S. Jaroch H. Weinmann

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Berkessel, A. (2008). Organocatalysis by Hydrogen Bonding Networks. In: Reetz, M., List, B., Jaroch, S., Weinmann, H. (eds) Organocatalysis. Ernst Schering Foundation Symposium Proceedings, vol 2007/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2008_080

Download citation

Publish with us

Policies and ethics