Advertisement

In Vitro and In Vivo Characterization of a Novel Nonsteroidal, Species-Specific Progesterone Receptor Modulator, PRA-910

  • Z. Zhang
  • S. G. Lundeen
  • O. Slayden
  • Y. Zhu
  • J. Cohen
  • T. J. Berrodin
  • J. Bretz
  • S. Chippari
  • J. Wrobel
  • P. Zhang
  • A. Fensome
  • R. C. Winneker
  • M. R. Yudt
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/1)

Abstract

The progesterone receptor (PR) is an important regulator of female reproduction. Consequently, PR modulators have found numerous pharmaceutical utilities in women's reproductive health. In the process of identifying more receptor-specific and tissue-selective PR modulators, we discovered a novel nonsteroidal, 6-aryl benzoxazinone compound, PRA-910, that displays unique in vitro and in vivo activities. In a PR/PRE reporter assay in COS-7 cells, PRA-910 shows potent PR antagonist activity with an IC50 value of approximately 20 nM. In the alkaline phosphatase assay in the human breast cancer cell line T47D, PRA-910 is a partial progesterone antagonist at low concentrations and is also an effective PR agonist at higher concentrations (EC50 value of approximately 700 nM). PRA-910 binds to the human PR with high affinity (K d=4 nM) and was previously shown to exhibit greater than 100-fold selectivity for the PR versus other steroid receptors. In the adult ovariectomized rat, PRA-910 is a potent PR antagonist. It inhibits progesterone-induced uterine decidual response with an ED50 value of 0.4 mg/kg, p.o., and reverses progesterone suppression of estradiol-induced complement C3 expression with potency similar to RU-486. In the nonhuman primate, however, PRA-910 is a PR agonist. The effect on endometrial histology strongly resembles that of progesterone. This unique compound also suppresses estradiol-induced epithelial cell proliferation and both estrogen and progesterone receptor expression in the uterine endometrium as a PR agonist would. In summary, PRA-910 is a structurally and biologically novel selective PR modulator with either PR agonist or antagonist activity, depending on context, concentration, and species.

Keywords

Progesterone Receptor T47D Cell Testosterone Propionate Postmenopausal Hormone Therapy Alkaline Phosphatase Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Dr. S.G. Lundeen for numerous contributions to this project. Dr. O. Slayden is a recipient of grant #RR00163 from Oregon National Primate Center.

References

  1. Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O'Malley BW (1992) Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267:19513–19520PubMedGoogle Scholar
  2. Beck CA, Estes PA, Bona BJ, Murocacho CA, Nordeen SK, Edwards DP (1993) The steroid antagonist Ru486 exerts different effects on the glucocorticoid and progesterone receptors. Endocrinology 133:728–740PubMedCrossRefGoogle Scholar
  3. Chwalisz K, Perez MC, Demanno D, Winkel C, Schubert G, Elger W (2005) Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis. [erratum appears in Endocr Rev 2005 Aug;26(5):703]. Endocr Rev 26:423–438PubMedCrossRefGoogle Scholar
  4. Foidart JM (2000) The contraceptive profile of a new oral contraceptive with antimineralocorticoid and antiandrogenic effects. Eur J Contracept Reprod Health Care 5 [Suppl 3]:25–33Google Scholar
  5. Lundeen SG, Zhang Z, Zhu Y, Carver JM, Winneker RC (2001) Rat uterine complement C3 expression as a model for progesterone receptor modulators: characterization of the new progestin trimegestone. J Steroid Biochem Mol Biol 78:137–143PubMedCrossRefGoogle Scholar
  6. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278PubMedCrossRefGoogle Scholar
  7. McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW (1995) Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol 9:659–669PubMedCrossRefGoogle Scholar
  8. Melamed M, Castano E, Notides AC, Sasson S (1997) Molecular and kinetic basis for the mixed agonist/antagonist activity of estriol. Mol Endocrinol 11:1868–1878PubMedCrossRefGoogle Scholar
  9. Psychoyos A (1973) Hormonal control of ovoimplantation. Vitam Horm 31:201–256PubMedCrossRefGoogle Scholar
  10. Slayden OD, Chwalisz K, Brenner RM (2001a) Reversible suppression of menstruation with progesterone antagonists in rhesus macaques. Hum Reprod 16:1562–1574PubMedCrossRefGoogle Scholar
  11. Slayden OD, Brenner RM (1994) RU 486 action after estrogen priming in the endometrium and oviducts of rhesus monkeys (Macaca mulatta). J Clin Endocrinol Metab 78:440–448PubMedCrossRefGoogle Scholar
  12. Slayden OD, Koji T, Brenner RM (1995) Microwave stabilization enhances immunocytochemical detection of estrogen receptor in frozen sections of macaque oviduct. Endocrinology 136:4012–4021PubMedCrossRefGoogle Scholar
  13. Slayden OD, Nayak NR, Burton KA, Chwalisz K, Cameron ST, Critchley HO, Baird DT, Brenner RM (2001b) Progesterone antagonists increase androgen receptor expression in the rhesus macaque and human endometrium. J Clin Endocrinol Metab 86:2668–2679PubMedCrossRefGoogle Scholar
  14. Slayden OD, Zelinski MB, Chwalisz K, Hess-Stumpp H, Brenner RM (2006) Chronic progesterone antagonist-estradiol therapy suppresses breakthrough bleeding and endometrial proliferation in a menopausal macaque model. Hum Reprod 21:3081–3090PubMedCrossRefGoogle Scholar
  15. Tabata Y, Iizuka Y, Shinei R, i Kurihara K, Okonogi T, Hoshiko S, Kurata Y (2003) CP8668, a novel orally active nonsteroidal progesterone receptor modulator with tetrahydrobenzindolone skeleton. [erratum appears in Eur J Pharmacol 2003 Apr 4;465(3):299]. Eur J Pharmacol 461:73–78PubMedCrossRefGoogle Scholar
  16. Zhang Z, Funk C, Glasser SR, Mulholland J (1994) Progesterone regulation of heparin-binding epidermal growth factor-like growth factor gene expression during sensitization and decidualization in the rat uterus: effects of the antiprogestin, ZK 98.299. Endocrinology 135:1256–1263PubMedCrossRefGoogle Scholar
  17. Zhang Z, Lundeen SG, Zhu Y, Carver JM, Winneker RC (2000) In vitro characterization of trimegestone: a new potent and selective progestin. Steroids 65:637–643PubMedCrossRefGoogle Scholar
  18. Zhang P, Terefenko EA, Fensome A, Wrobel J, Winneker R, Lundeen S, Marschke KB, Zhang Z (2002a) 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin-2-ones: a novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J Med Chem 45:4379–4382PubMedCrossRefGoogle Scholar
  19. Zhang P, Terefenko EA, Fensome A, Zhang Z, Zhu Y, Cohen J, Winneker R, Wrobel J, Yardley J (2002b) Potent nonsteroidal progesterone receptor agonists: synthesis and SAR study of 6-aryl benzoxazines. Bioorg Med Chem Lett 12:787–790PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Z. Zhang
    • 1
  • S. G. Lundeen
    • 1
  • O. Slayden
    • 2
  • Y. Zhu
    • 1
  • J. Cohen
    • 1
  • T. J. Berrodin
    • 1
  • J. Bretz
    • 1
  • S. Chippari
    • 1
  • J. Wrobel
    • 3
  • P. Zhang
    • 3
  • A. Fensome
    • 3
  • R. C. Winneker
    • 1
  • M. R. Yudt
    • 1
  1. 1.Women's Health and Musculoskeletal BiologyWyeth ResearchCollegevilleUSA
  2. 2.Oregon National Primate CenterPortlandUSA
  3. 3.Chemical and Screening SciencesWyeth ResearchCollegevilleUSA

Personalised recommendations